1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Black_prince [1.1K]
2 years ago
9

A rock from the top of a hill is falling from rest.

Physics
1 answer:
dsp732 years ago
3 0

Object name:- <u>R</u><u>o</u><u>c</u><u>k</u>

Starting energy:- <u>K</u><u>i</u><u>n</u><u>e</u><u>t</u><u>i</u><u>c</u><u> </u><u>e</u><u>n</u><u>e</u><u>r</u><u>g</u><u>y</u>

Conversion:- <u>Potential</u><u> </u><u>to</u><u> </u><u>kinetic</u><u> </u><u>energy</u>

Final energy form:- <u>P</u><u>o</u><u>t</u><u>e</u><u>n</u><u>t</u><u>i</u><u>a</u><u>l</u><u> </u><u>e</u><u>n</u><u>e</u><u>r</u><u>g</u><u>y</u>

Non usable form if energy:- <u>N</u><u>i</u><u>l</u><u> </u> [ As it has potential & kinetic both]

You might be interested in
If the charge on the negative plate of the capacitor is 121 nano-Coulomb, how many excess electrons are on that plate? Write you
Julli [10]

Answer:

n = 756.25 giga electrons

Explanation:

It is given that,

If the charge on the negative plate of the capacitor, Q=121\ nC=121\times 10^{-9}\ C

Let n is the number of excess electrons are on that plate. Using the quantization of charges, the total charge on the negative plate is given by :

Q=ne

e is the charge on electron

n=\dfrac{Q}{e}

n=\dfrac{121\times 10^{-9}}{1.6\times 10^{-19}}

n=7.5625\times 10^{11}

or

n = 756.25 giga electrons

So, there are 756.25 giga electrons are on the plate. Hence, this is the required solution.

6 0
3 years ago
A ball is thrown horizontally from the top of a 60 m building and lands 100 m from the base of the building. How long is the bal
zhannawk [14.2K]

Answer:

The ball is in the air for 3.5 seconds

The initial horizontal component of velocity is 28.6 m/s

The vertical component of the final velocity is 34.3 m/s downward

The final velocity is 44.7 m/s in the direction 50.2° below the horizontal

Explanation:

A ball is thrown horizontally

That means the vertical component of the initial velocity u_{y}=0

The initial velocity is the horizontal component u_{x}

The ball is thrown from the top of a 60 m

That means the vertical displacement component y = 60 m

→ y = u_{y} t + \frac{1}{2} gt²

where g is the acceleration of gravity and t is the time

y = -60 m , g = -9.8 m/s² , u_{y}=0

Substitute these values in the rule

→ -60 = 0 + \frac{1}{2} (-9.8)t²

→ -60 = -4.9t²

Divide both sides by -4.9

→ 12.2449 = t²

Take √ for both sides

∴ t = 3.5 seconds

* <em>The ball is in the air for 3.5 seconds </em>

The initial velocity is the horizontal component u_{x}

The ball lands 100 meter from the base of the building

That means the horizontal displacement x = 100 m

→ x = u_{x} t

→ t = 3.5 s , x = 100 m

Substitute these values in the rule

→ 100 = u_{x} (3.5)

Divide both sides by 3.5

→ u_{x} = 28.57 m/s

<em>The initial horizontal component of velocity is 28.6 m/s</em>

The vertical component of the final velocity is v_{y}

→ v_{y} = u_{y} + gt

→ u_{y} = 0 , g = -9.8 m/s² , t = 3.5 s

Substitute these values in the rule

→ v_{y} = 0 + (-9.8)(3.5)

→ v_{y} = -34.3 m/s

<em>The vertical component of the final velocity is 34.3 m/s downward</em>

The final velocity v is the resultant vector of  v_{x} and v_{y}

→ Its magnetude is v=\sqrt{(v_{x})^{2}+(v_{y})^{2}}

→ Its direction tan^{-1}\frac{v_{y}}{v_{x}}

→ v_{y} = 28.6 , v_{y} = -34.3

Substitute this values in the rules above

→ v=\sqrt{(28.6)^{2}+(-34.3)^{2}}=44.66

→ Its direction tan^{-1}\frac{-34.3}{28.6}=-50.18

The negative sign means the direction is below the horizontal

<em>The final velocity is 44.7 m/s in the direction 50.2° below the horizontal</em>

7 0
2 years ago
Father, I come to you worn and weary from the hard times I have walked through recently. I come to you seeking your shelter wher
Romashka [77]
This is not a HES tip
6 0
2 years ago
Read 2 more answers
To initiate a nuclear reaction, an experimental nuclear physicist wants to shoot a proton into a 5.50-fm-diameter 12C nucleus. T
vladimir1956 [14]

Answer:

Explanation:

kinetic energy required = 1.80 MeV

= 1.8 x 10⁶ x 1.6 x 10⁻¹⁹ J

= 2.88 x 10⁻¹³ J

If v be the velocity of proton

1/2 x mass of proton x v² = 2.88 x 10⁻¹³

= .5 x 1.67 x 10⁻²⁷ x v² = 2.88 x 10⁻¹³

v² = 3.45 x 10¹⁴

v = 1.86 x 10⁷ m /s

If V be the potential difference required

V x e = kinetic energy . where e is charge on proton .

V x 1.6 x 10⁻¹⁹ = 2.88 x 10⁻¹³

V = 1.8 x 10⁶ volt .

3 0
2 years ago
PLEASE HELP ASAP!!
Stells [14]

Its B: reduce the amount of energy needed to do the work by putting the work onto something else

3 0
2 years ago
Read 2 more answers
Other questions:
  • If you pour different liquids into a graduated cylinder, which layer would be at the bottom?
    7·1 answer
  • What color will the paper appear? Explain why?
    15·1 answer
  • A bag of cement weighing 325 N hangs in equilibrium from three wires. Two of the wires make angles of theta1=60.0 degrees and th
    6·1 answer
  • For a given wing–body combination, the aerodynamic center lies 0.03 chord length ahead of the center of gravity. The moment coef
    14·1 answer
  • What is the ostrich’s average acceleration from 9.0 to 18s
    15·1 answer
  • If astronauts could travel at v disagree. 0.945c, we on Earth would say it takes 4.200 945 4 44 years to reach pha centaur 42Ф
    12·1 answer
  • Photochemical smog consists of
    10·1 answer
  • Hi.
    11·1 answer
  • Which feature of a heating curve indicates a change of state
    10·1 answer
  • Sarah rides her horse with a constant speed of 12km/h. How far can she travel in 3 hours?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!