Answer:
Final temperature of the aluminum = 41.8 °C
Explanation:
We have the equation for energy
E = mcΔT
Here m = 55 g = 0.055 kg
ΔT = T - 27.5
Specific heat capacity of aluminum = 921.096 J/kg.K
E = 725 J
Substituting
E = mcΔT
725 = 0.055 x 921.096 x (T - 27.5)
T - 27.5 = 14.31
T = 41.81 ° C = 41.8 °C
Final temperature of the aluminum = 41.8 °C
Answer:
a. 1.027 x 10^7 m/s b. 3600 V c. 0 V and d. 1.08 MeV
Explanation:
a. KE =1/2 (MV^2) where the M is mass of electron
b. E = V/d
c. V= 0 V (momentarily the pd changes to zero)
d KE= 300*3600 v = 1.08 MeV
I have one reason the reaction take place faster because the molecules are going at a faster pace because the temperature is rising