Answer:
a.2.5x 10^3 m/s
b.mr=48kg/s
Explanation:
A rocket is moving away from the solar system at a speed of 7.5 ✕ 103 m/s. It fires its engine, which ejects exhaust with a speed of 5.0 ✕ 103 m/s relative to the rocket. The mass of the rocket at this time is 6.0 ✕ 104 kg, and its acceleration is 4.0 m/s2. What is the velocity of the exhaust relative to the solar system? (B) At what rate was the exhaust ejected during the firing?
velocity of the exhaust relative to the solar system
velocity of the rocket -velocity of the exhaust relative to the rocket.
7.5 ✕ 103 m/s-5.0 ✕ 103 m/s
2.5x 10^3 m/s
. b we will look for the thrust of the rocket
T=ma
T=6.0 ✕ 104 kg*4.0 m/s2
T=2.4*10^5N
f=mass rate *velocity of the exhaust
T=2.4*10^5N=mr*5.0 ✕ 10^3 m/s
mr=2.4*10^5N/5.0 ✕ 10^3
mr=48kg/s
B because the the organism is changing into another chemical form
Answer:
Decreasing the number of warps of wire
Replacing the steel core of the magnet with a plastic core
Explanation:
But I’m not exactly sure about your answers these are the two answers I had
Explanation:
This question is not feasible. There is no way to calculate the energy needed because the question is missing the final temperature
your answer is c) Ends
As can be visualized with the magnetic field lines, the magnetic field is strongest inside the magnetic material. The strongest external magnetic fields are near the poles. A magnetic north pole will attract the south pole of another magnet, and repel a north pole.