Answer:
The potential energy is transformed into kinetic energy
Explanation:
This particular case is defined as the principle of energy conservation since energy is not created or destroyed only transforms. When you have potential energy it can be transformed into kinetic energy or vice versa. In this problem, we have the case of a ball that sits on a desk and then falls to the ground. In this way the ground will be taken as a reference point, this is a point at which the potential energy will be equal to zero in such a way that when the ball is on the desktop that is above the reference line its potential energy will be maximum. As the ball drops its potential energy decreases, as the height relative to the ground (reference point) decreases. In contrast its kinetic energy increases and increases as it approaches the ground. So when it hits the ground it will have maximum kinetic energy and will be equal to the potential energy for when the ball was on the desk.
Therefore:
![E_{p} = potential energy [J] = E_{k} = kinetic energy [J]where:\\E_{p} =m*g*h\\m =mass [kg]\\g=gravity[m/s^2]\\h=elevation[m]\\E_{k} = \frac{1}{2} *m*v^{2} \\where:\\v=velocity [m/s]\\\frac{1}{2} *m*v^{2} = m*g*h](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3D%20potential%20energy%20%5BJ%5D%20%3D%20E_%7Bk%7D%20%3D%20kinetic%20energy%20%5BJ%5Dwhere%3A%5C%5CE_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5Cm%20%3Dmass%20%5Bkg%5D%5C%5Cg%3Dgravity%5Bm%2Fs%5E2%5D%5C%5Ch%3Delevation%5Bm%5D%5C%5CE_%7Bk%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5Cwhere%3A%5C%5Cv%3Dvelocity%20%5Bm%2Fs%5D%5C%5C%5Cfrac%7B1%7D%7B2%7D%20%20%2Am%2Av%5E%7B2%7D%20%3D%20m%2Ag%2Ah)
By definition, the mechanical advantage is the relationship that exists between the output force or load lifted and the value of the force applied.
Thus, using the definition, we have that the mechanical advantage is given by:

Therefore, the mechanical advantage of lifting the box by using a pulley is equal to 1.
Answer:
The mechanical advantage in this situation is:
Equal to 1
Answer:
a) d = 30.79 m
, b) θ = -22.4°
, θ = 22.4 South of East
Explanation:
The easiest way to solve problems with vectors is to use their components, for this the East-West direction coincides with the x-axis and the North-South direction coincides with the y-axis
Let's use the index for / Ricardo and the index for Jane, let's break down the displacements
Richard
X axis
x₁ = 26.0 sin (60)
x₁ = -22.52 m
Y Axis
y₁ = 26.0 cos 60
y₁ = 13 m / s
Jane
X axis
x₂ = 16.0 cos (180 +30)
x₂ = -13.85 m
Y Axis
y₂ = 16.0 sin (180 + 30)
y₂ = - 8.0 m
Now we can use Pythagoras' theorem to find the distance between them
d = √ [(x₂ -x₁)² + (y₂ -y₁)²]
d = √ [(-13.85 + 22.52)² + (-8 -13)²]
d = 30.79 m
Let's use trigonometry to enter the address
tan θ = Δy / Δx
θ = tan⁻¹ Δy / Δx
θ = tan⁻¹ (-13.85 + 22.52) / (-8 - 13)
θ = tan⁻¹ (-8.67 / 21)
θ = -22.4°
The negative sign indicates that the angle is measured from the axis clockwise.
In the form of cardinal s point is
θ = 22.4 South of East
answer- 2.3
km/hr 120/1 276/h 276/2.3