What is the length of side s of the square shown below? 450 90" A. 4-3 B. 1 C. 4 D. 2 E F. 2.5
2 answers:
Answer:
E
Step-by-step explanation:
Using Pythagoras' identity in the right triangle
s² + s² = 2²
2s² = 4 ( divide both sides by 2 )
s² = 2 ( take the square root of both sides )
s = 
Answer:
E.
Step-by-step explanation:
we know the diagonal of the square : 2
as you can see in the picture, there is a right-angled triangle with the baseline of Hypotenuse being the diagonal, and 2 times s being the 2 sides.
that means we can use Pythagoras to calculate s :
2² = s² + s²
4 = 2s²
2 = s²
s = sqrt(2)
You might be interested in
Answer:
0.5
Step-by-step explanation:
22.7: 45.4 = 22.7/45.4
= 227/454
= 0.5
Answer:
I am sorry. To answer a test is against the Honor Code, I cannot help you.
Step-by-step explanation:
Remember PEMDAS :)
Answer:
I think the answer is Four
Step-by-step explanation:
3.9-8= 4,5,6,7
Ok so first equate all the three equations whether by substituting or by eliminating then choose the one das not the answer