Intensive properties and extensive properties are types of physical properties of matter. The terms intensive and extensive were first described by physical chemist and physicist Richard C. Tolman in 1917. Here's a look at what intensive and extensive properties are, examples of them, and how to tell them apart.
Intensive Properties
Intensive properties are bulk properties, which means they do not depend on the amount of matter that is present. Examples of intensive properties include:
Boiling point
Density
State of matter
Color
Melting point
Odor
Temperature
Refractive Index
Luster
Hardness
Ductility
Malleability
Intensive properties can be used to help identify a sample because these characteristics do not depend on the amount of sample, nor do they change according to conditions.
Extensive Properties
Extensive properties do depend on the amount of matter that is present. An extensive property is considered additive for subsystems. Examples of extensive properties include:
Volume
Mass
Size
Weight
Length
The ratio between two extensive properties is an intensive property. For example, mass and volume are extensive properties, but their ratio (density) is an intensive property of matter.
While extensive properties are great for describing a sample, they aren't very helpful identifying it because they can change according to sample size or conditions.
Way to Tell Intensive and Extensive Properties Apart
One easy way to tell whether a physical property is intensive or extensive is to take two identical samples of a substance and put them together. If this doubles the property (e.g., twice the mass, twice as long), it's an extensive property. If the property is unchanged by altering the sample size, it's an intensive property.
Answer:
Which? Im guessing theres options, can you say the options?
Step-by-step explanation:
Since you're adding x feet to the length which is 12 feet:
New area: (12+x)10.5
Answer:
350
Step-by-step explanation:
If there are 210 girls, then the number of boys is (210÷3)x7=350.
The total of 2 buckets of popcorn and 3 boxes of candy would be $23.25
To answer this question you need to form a set of simultaneous equations and solve them. We can do this by saying that a bucket of popcorn = P, and a box of candy = C. Then we can say:
4P + 6C = 46.50
P + C = 9.75
There are then two possible ways to solve; you can either say that C = 9.75 - P using the second equation and then substitute it into the first, or you can multiply the second equation by either 4 or 6 to cancel out P or C.
I’m going to multiply the second equation by 4:
4P + 4C = 39
Now we can subtract this for, the first equation:
4P + 6C = 46.50
4P + 4C = 39
2C = 7.50
C = 3.75
Now we can substitute this value of C into one of the equations to find P:
P + C = 9.75
P + 3.75 = 9.75
P = 6
And now to answer the question, you just multiply P by 2 and C by 3 and add them together, which gives you $23.25
I hope this helps! Let me know if you have any questions :)