Answer:
a. Let us consider that L is responsible for late and l is responsible for early. From the mentioned data, it can be concluded that allele L or late is dominant over early. By crossing plants 1 and 4 we get the expected ratio of 3: 1, which shows that it follows Mendel's law of dominant.
b. The genotype of all the four plants are:
1st plant = Ll
2nd plant = ll
3rd plant = LL
4th plant = Ll
c. If the plant 1 is self-fertilized then the expected progeny will be 3 (late): 1 (early).
In case if the 2nd plant is self-fertilized, the expected progeny will be only early.
In case if the 3rd plant is self-fertilized, the expected progeny will be only late.
In case if the 4th plant is self-fertilized, the expected progeny will be 3 (late): 1 (early).
The Silurian period occurred before the Neogene period.
I hope this helps.
Answer: 0.18
Explanation:
For the alleles, the percentage distribution of each is 'A' (90% = 0.9)
While 'a' (10% = 0.1)
Hence, 0.9 and 0.1 are the respective frequencies of each allele
Now, apply Hardy-Weinberg Equilibrium equation, where heterozygotes are represented by the 2pq term.
Therefore, the number of heterozygous individuals (Aa) is equal to 2pq which equals
2 × 0.9 × 0.1 = 0.18
Thus, the frequency of heterozygote is 0.18, while the percentage distribution in the population is 18%
True because it makes since and it’s a better answer than false
<span>Thy hyaline cartilage covers and protects the ends of bones at freely movable joints. The hyaline cartilage contains elements that are found commonly in areas such as the ear. It is made this way because it is very elastic allowing the joints it is covering to have more flexibility.</span>