In response to the increasing weight of airline passengers, the Federal Aviation Administration (FAA) told airlines to assume th
at passengers average 200 pounds in the summer, including clothes and carry-on baggage. But passengers vary, and the FAA did not specify a standard deviation. A reasonable standard deviation is 35 pounds. Weights are not Normally distributed, especially when the population includes both men and women, but they are not very non-Normal. A commuter plane carries 30 passengers. Required:
Explain why you cannot calculate the probability that a randomly selected passenger weighs more than 200 pounds.
Because we don't know the exact shape of the population distribution since they are not Normally distributed and they are also not very non-Normal
Step-by-step explanation:
We are given;
Population standard deviation;μ = 200
Population standard deviation; σ = 35
Sample size; n = 30
We are told that the weights are not Normally distributed and they are also not very non-Normal. Therefore it means we don't know the exact shape of the population distribution and as such we can't calculate the probability that a randomly selected passenger weighs more than 200 pounds.