Answer:
Step-by-step explanation:
Write 34 in tens and units.
34 = 30 + 4
9(30 + 4)
9 * 30 = 270
9* 4 = 36
270 + 36 = 306
After awhile if your practice enough, you can do them in your head.
Answer:
Step-by-step explanation:
Given the following complex numbers, we are to expressed them in the form of a+bi where a is the real part and b is the imaginary part of the complex number.
1) (2-6i)+(4+2i)
open the parenthesis
= 2-6i+4+2i
collect like terms
= 2+4-6i+2i
= 6-4i
2) (6+5i)(9-2i)
= 6(9)-6(2i)+9(5i)-5i(2i)
= 54-12i+45i-10i²
= 54+33i-10i²
In complex number i² = -1
= 54+33i-10(-1)
= 54+33i+10
= 54+10+33i
= 64+33i
3) For the complex number 2/(3-9i), we will rationalize by multiplying by the conjugate of the denominator i.e 3+9i
= 2/3-9i*3+9i/3+9i
=2(3+9i)/(3-9i)(3+9i)
= 6+18i/9-27i+27i-81i²
= 6+18i/9-81(-1)
= 6+18i/9+81
= 6+18i/90
= 6/90 + 18i/90
= 1/15+1/5 i
4) For (3 − 5i)(7 − 2i)
open the parenthesis
= 3(7)-3(2i)-7(5i)-5i(-2i)
= 21-6i-35i+10i²
= 21-6i-35i+10(-1)
= 21-41i-10
= 11-41i
C does not represents a function
It would be 9/8, 6/5, 1 1/4, 14/1