1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marat540 [252]
3 years ago
14

Please could ya help a girl

Mathematics
1 answer:
Illusion [34]3 years ago
3 0

Answer:

A princess is stuck at the top of a tower that is 20 ft tall. To get down she shoots an arrow with rope attached into the ground and it lands 15 ft away from the tower. how long is the rope to safely guide her onto the ground.

Step-by-step explanation:

using the Pythagorean theory which is a squared plus b squared equals c squared you will see that 20 squared plus 15 squared will equal 625. Once you have that answer you find the square root of 625 which will give you your overall answer of 25.

You might be interested in
Hey will mark highest
VashaNatasha [74]

Answer:

Step-by-step explanation:

x + 159 = 180

x = 21

4 0
3 years ago
Read 2 more answers
Can u help me ASAP. i need to know how to do it step by step​
12345 [234]

Answer:

<em>19</em>

Step-by-step explanation:

f(x) =4x^3-8x^2+ax+b has a factor 2x-1 and

when divided by x+2, remainder is 20.

To find:Remainder when divided by (x-1)  ?

Solution:

2x-1 is a factor

2x - 1 = 0 \Rightarrow x = \frac{1}{2} when we put this value of x to the function, it will become 0.

i.e.

\Rightarrow f(\dfrac{1}{2}) =0 =4\times (\dfrac{1}2)^3-8(\dfrac{1}2)^2+\dfrac{a}{2}+b=0\\\Rightarrow \dfrac{1}{2}-2+\dfrac{a}{2}+b=0\\\Rightarrow 1-4+a+2b=0\\\Rightarrow a +2b=3 ......(1)

Remainder is 20 when f(x) is divided by x+2

i.e.

f(-2) =20

\Rightarrow f(-2) =20 =4\times (-2)^3-8(-2)^2-2a+b=20\\\Rightarrow -32-32-2a+b=20\\\Rightarrow -2a+b=84 ...... (2)

Solving (1) and (2), Multiply equation (1) by 2 and adding to (2):

5b=6+84\\\Rightarrow b = \dfrac{90}{5} = \bold{18}

By equation (1):

a+2(18) = 3\\\Rightarrow a = -33

So, the equation becomes:

f(x) =4x^3-8x^2-33x+18

\Rightarrow f(1) = 4(1) -8 (1) -33(1) +18 = \bold{19}

So, when divided by (x-1), remainder will be <em>19</em>.

4 0
3 years ago
Suppose the graph of a cubic polynomial function has the same zeroes and passes through the coordinate (0, –5). Describe the ste
olga_2 [115]
1. "the graph has the same zeros" : so let a be the "triple" root of the cubic polynomial function.

2. So f(x)=(x-a)^{3}

3. Don't forget that the expression might have a coefficient b as well, and still maintain the conditions: 
 
f(x)=b(x-a)^{3}

4. Now, f(0)=-5 so  -5=f(0)=b(0-a)^{3}=b(-a) ^{3}=-ba ^{3}

-5=-ba ^{3}

5=ba ^{3}

b= \frac{5}{ a^{3} }

5. the function is f(x)=\frac{5}{ a^{3} }(x-a)^{3} where a can be any real number except 0
7 0
4 years ago
Read 2 more answers
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
HELP ASAP PLEASE :))))))
IrinaK [193]

Answer:

7

Step-by-step explanation:

because I am smart and cause im smart

5 0
3 years ago
Read 2 more answers
Other questions:
  • Find the GCF of this number 17,22
    10·2 answers
  • PLEASE help me with 26 and 27 asap
    14·1 answer
  • Two students, Raymond and Shauna, are trying to get city council members to vote for a new park along the river. 2/6 of the 24 c
    8·1 answer
  • Y2 – 3y + 2 = 0 solve buy factoring
    9·1 answer
  • A person-hour is a unit of measure representing one person working for one hour. A construction foreman estimates that it will t
    10·1 answer
  • Which statements are true about the experimental and theoretical probability of this trial?
    7·2 answers
  • Regular polygons have an even number of sides
    10·1 answer
  • 1/3x^2-5=7 what is x
    10·1 answer
  • Which expression is equivalent to the expression below? p+p+p+p+p+p+q+q+q+q p+p+p+p+p+p+q+q+q+q
    6·2 answers
  • Work out the surface area of this cylinder
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!