1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zubka84 [21]
3 years ago
9

Identify the graph of the line passing through (0, -3) and (1, 0)

Mathematics
1 answer:
Elena-2011 [213]3 years ago
5 0
Choice B:
The line intersects at both points (0,-3) and (1,0)

(I can not specifically see the number on the grid if there is any but that is what I would put for the answer based on what I see)

If you want me to explain it more I can try to! :)

I hope this helps
You might be interested in
PLZ HELP ME PS JUST GOT DEZ POINTS NOW I HAS ) POINTS DDDUE TOMORROW AND IT IS ONE QUESTION EASY &TH GRAdE
astra-53 [7]

2.666 is equal to 2 2/3

or as an improper fraction: 8/3

4 0
3 years ago
Read 2 more answers
Suppose that the number of drivers who travel between a particular origin and destination during a designated time period has a
kipiarov [429]

Answer:

a) P(k≤11) = 0.021

b) P(k>23) = 0.213

c) P(11≤k≤23) = 0.777

P(11<k<23) = 0.699

d) P(15<k<25)=0.687

Step-by-step explanation:

a) What is the probability that the number of drivers will be at most 11?

We have to calculate P(k≤11)

P(k\leq11)=\sum_0^{11} P(k

P(k=0) = 20^0e^{-20}/0!=1 \cdot 0.00000000206/1=0\\\\P(k=1) = 20^1e^{-20}/1!=20 \cdot 0.00000000206/1=0\\\\P(k=2) = 20^2e^{-20}/2!=400 \cdot 0.00000000206/2=0\\\\P(k=3) = 20^3e^{-20}/3!=8000 \cdot 0.00000000206/6=0\\\\P(k=4) = 20^4e^{-20}/4!=160000 \cdot 0.00000000206/24=0\\\\P(k=5) = 20^5e^{-20}/5!=3200000 \cdot 0.00000000206/120=0\\\\P(k=6) = 20^6e^{-20}/6!=64000000 \cdot 0.00000000206/720=0\\\\P(k=7) = 20^7e^{-20}/7!=1280000000 \cdot 0.00000000206/5040=0.001\\\\

P(k=8) = 20^8e^{-20}/8!=25600000000 \cdot 0.00000000206/40320=0.001\\\\P(k=9) = 20^9e^{-20}/9!=512000000000 \cdot 0.00000000206/362880=0.003\\\\P(k=10) = 20^{10}e^{-20}/10!=10240000000000 \cdot 0.00000000206/3628800=0.006\\\\P(k=11) = 20^{11}e^{-20}/11!=204800000000000 \cdot 0.00000000206/39916800=0.011\\\\

P(k\leq11)=\sum_0^{11} P(k

b) What is the probability that the number of drivers will exceed 23?

We can write this as:

P(k>23)=1-\sum_0^{23} P(k=x_i)=1-(P(k\leq11)+\sum_{12}^{23} P(k=x_i))

P(k=12) = 20^{12}e^{-20}/12!=8442485.238/479001600=0.018\\\\P(k=13) = 20^{13}e^{-20}/13!=168849704.75/6227020800=0.027\\\\P(k=14) = 20^{14}e^{-20}/14!=3376994095.003/87178291200=0.039\\\\P(k=15) = 20^{15}e^{-20}/15!=67539881900.067/1307674368000=0.052\\\\P(k=16) = 20^{16}e^{-20}/16!=1350797638001.33/20922789888000=0.065\\\\P(k=17) = 20^{17}e^{-20}/17!=27015952760026.7/355687428096000=0.076\\\\P(k=18) = 20^{18}e^{-20}/18!=540319055200533/6402373705728000=0.084\\\\

P(k=19) = 20^{19}e^{-20}/19!=10806381104010700/121645100408832000=0.089\\\\P(k=20) = 20^{20}e^{-20}/20!=216127622080213000/2432902008176640000=0.089\\\\P(k=21) = 20^{21}e^{-20}/21!=4322552441604270000/51090942171709400000=0.085\\\\P(k=22) = 20^{22}e^{-20}/22!=86451048832085300000/1.12400072777761E+21=0.077\\\\P(k=23) = 20^{23}e^{-20}/23!=1.72902097664171E+21/2.5852016738885E+22=0.067\\\\

P(k>23)=1-\sum_0^{23} P(k=x_i)=1-(P(k\leq11)+\sum_{12}^{23} P(k=x_i))\\\\P(k>23)=1-(0.021+0.766)=1-0.787=0.213

c) What is the probability that the number of drivers will be between 11 and 23, inclusive? What is the probability that the number of drivers will be strictly between 11 and 23?

Between 11 and 23 inclusive:

P(11\leq k\leq23)=P(x\leq23)-P(k\leq11)+P(k=11)\\\\P(11\leq k\leq23)=0.787-0.021+ 0.011=0.777

Between 11 and 23 exclusive:

P(11< k

d) What is the probability that the number of drivers will be within 2 standard deviations of the mean value?

The standard deviation is

\mu=\lambda =20\\\\\sigma=\sqrt{\lambda}=\sqrt{20}= 4.47

Then, we have to calculate the probability of between 15 and 25 drivers approximately.

P(15

P(k=16) = 20^{16}e^{-20}/16!=0.065\\\\P(k=17) = 20^{17}e^{-20}/17!=0.076\\\\P(k=18) = 20^{18}e^{-20}/18!=0.084\\\\P(k=19) = 20^{19}e^{-20}/19!=0.089\\\\P(k=20) = 20^{20}e^{-20}/20!=0.089\\\\P(k=21) = 20^{21}e^{-20}/21!=0.085\\\\P(k=22) = 20^{22}e^{-20}/22!=0.077\\\\P(k=23) = 20^{23}e^{-20}/23!=0.067\\\\P(k=24) = 20^{24}e^{-20}/24!=0.056\\\\

3 0
3 years ago
A box contains 6 blue pens and 10 red pens. What is the ratio of red pens to total pens as a fraction​
JulijaS [17]

Answer: 5/8

Step-by-step explanation: The ratio is 10:16 because total of 16 pens and 10 being red.

5 0
3 years ago
Read 2 more answers
MULTIPLE CHOICE QUESTION
frosja888 [35]

Answer:

Step-by-step explanation:

11 and 12

8 0
3 years ago
What is 248 divided by 3?
Minchanka [31]
Answer is 82.6666 and keeps going
4 0
3 years ago
Read 2 more answers
Other questions:
  • Giselle bought a dress for $35 and three t-shirts. She used a coupon for $2.50 off each t-shirt. The total cost can be modeled b
    6·1 answer
  • 5. Write each number in another form.
    5·1 answer
  • I need help with this question
    15·1 answer
  • 1. Colored copies cost 10¢ per copy and white copies
    13·2 answers
  • The length of a ruler is 170cm,if the ruler broke into four equal parts.what will be the sum of the length of three parts
    9·1 answer
  • How many leaves are there if you have 9 clovers?
    10·2 answers
  • <img src="https://tex.z-dn.net/?f=5.6%20%20%20%20%5Cdiv%201.682" id="TexFormula1" title="5.6 \div 1.682" alt="5.6 \div 1.6
    13·2 answers
  • PLEASE HELP!!!!!!!!!!!!!!!!<br><br><br> simplify (4^3)^5
    13·2 answers
  • 5 yd<br> 6 yd<br> 10 yd<br> 2<br> ?<br> 13 yd
    11·1 answer
  • Find the perimeter of the figure below, in inches.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!