Answer:
he electron is directly transferred to NADP+ to NADPH, but electron flow is used to generate a proton gradient for ATP synthesis. Electron is not directly transferred to ATP
NADP= Nicotin amide adenine dinucleotide phosphate
NADPH =Nicotinamide adenine dinucleotide phosphate is the reduced form of NADP
therefore electron is not directly transferred to ATP
Answer:
A.3.13x10^14 electrons
B.330A/m²
C.9.11x10^5N/C
D. 0.23W
.pls see attached file for explanations
Answer:
Torque, 
Explanation:
It is given that,
Length of the wrench, l = 0.5 m
Force acting on the wrench, F = 80 N
The force is acting upward at an angle of 60.0° with respect to a line from the bolt through the end of the wrench. We need to find the torque is applied to the nut. We know that torque acting on an object is equal to the cross product of force and distance. It is given by :



So, the torque is applied to the nut is 34.6 N.m. Hence, this is the required solution.
Answer:
The coefficient of kinetic friction between the sled and the snow is 0.0134
Explanation:
Given that:
M = mass of person = 52 kg
m = mass of sled = 15.2 kg
U = initial velocity of person = 3.63 m/s
u = initial velocity of sled = 0 m/s
After collision, the person and the sled would move with the same velocity V.
a) According to law of momentum conservation:
Total momentum before collision = Total momentum after collision
MU + mu = (M + m)V

Substituting values:

The velocity of the sled and person as they move away is 2.81 m/s
b) acceleration due to gravity (g) = 9.8 m/s²
d = 30 m
Using the formula:

The coefficient of kinetic friction between the sled and the snow is 0.0134
Answer:
I_syst = 278.41477 kg.m²
Explanation:
Mass of platform; m1 = 117 kg
Radius; r = 1.61 m
Moment of inertia here is;
I1 = m1•r²/2
I1 = 117 × 1.61²/2
I1 = 151.63785 kg.m²
Mass of person; m2 = 62.5 kg
Distance of person from centre; r = 1.05 m
Moment of inertia here is;
I2 = m2•r²
I2 = 62.5 × 1.05²
I2 = 68.90625 kg.m²
Mass of dog; m3 = 28.3 kg
Distance of Dog from centre; r = 1.43 m
I3 = 28.3 × 1.43²
I3 = 57.87067 kg.m²
Thus,moment of inertia of the system;
I_syst = I1 + I2 + I3
I_syst = 151.63785 + 68.90625 + 57.87067
I_syst = 278.41477 kg.m²