Answer:
D
Explanation:
As we progress and learn more, scientists make new discoveries that can contradict earlier discoveries, and since are technology is better today we are able to discover a lot more to add to or change our previous theories.
The answer to that will be the Troposphere.
<h2>5.3 km</h2>
Explanation:
This question involves continuous displacement in various directions. When it becomes difficult to imagine, vector analysis becomes handy.
Let us denote each of the individual displacements by a vector. Consider the unit vectors
as the unit vectors in the direction of East and North respectively.
By simple calculations, we can derive the unit vectors
in the directions North,
South of West and
North of West respectively.
So Total displacement vector = Sum of individual displacement vectors.
Displacement vector = 
Magnitude of Displacement = 
∴ Total displacement = 
Answer:
The tension is 
The horizontal force provided by hinge 
Explanation:
From the question we are told that
The mass of the beam is
The length of the beam is 
The hanging mass is 
The length of the hannging mass is 
The angle the cable makes with the wall is 
The free body diagram of this setup is shown on the first uploaded image
The force
are the forces experienced by the beam due to the hinges
Looking at the diagram we ca see that the moment of the force about the fixed end of the beam along both the x-axis and the y- axis is zero
So

Now about the x-axis the moment is

=> 
Substituting values


Now about the y-axis the moment is

Now the torque on the system is zero because their is no rotation
So the torque above point 0 is





The horizontal force provided by the hinge is

Now substituting for T


Answer:
resistor R₂ has the lowest current density
Explanation:
The current density is
j = I / A
now let's analyze each case
a) R₂ has an area 2A₀ and a length L₀ that R₁
b) R₃ has an area Ao and a length 3L₀ what R₁
we can see that all the area is given in relation to the resistance R₁
the current density in R₁ is
j₁ = I / A₀
the current density in R₂
j₂ = I / 2A₀
j₂ 2 = ½ I/A₀
the current density in R₃
j₃ = I / A₀
j₂ < j₁ = j₃
therefore resistor R₂ has the lowest current density