Answer:
or 4.775
Step-by-step explanation:
The answer on this problem I think it would be 76
Answer:
The perimeter (to the nearest integer) is 9.
Step-by-step explanation:
The upper half of this figure is a triangle with height 3 and base 6. If we divide this vertically we get two congruent triangles of height 3 and base 3. Using the Pythagorean Theorem we find the length of the diagonal of one of these small triangles: (diagonal)^2 = 3^2 + 3^2, or (diagonal)^2 = 2*3^2.
Therefore the diagonal length is (diagonal) = 3√2, and thus the total length of the uppermost two sides of this figure is 6√2.
The lower half of the figure has the shape of a trapezoid. Its base is 4. Both to the left and to the right of the vertical centerline of this trapezoid is a triangle of base 1 and height 3; we need to find the length of the diagonal of one such triangle. Using the Pythagorean Theorem, we get
(diagonal)^2 = 1^2 + 3^2, or 1 + 9, or 10. Thus, the length of each diagonal is √10, and so two diagonals comes to 2√10.
Then the perimeter consists of the sum 2√10 + 4 + 6√2.
which, when done on a calculator, comes to 9.48. We must round this off to the nearest whole number, obtaining the final result 9.
Answer:
3(x + 2)(2x - 5)
Step-by-step explanation:
Given
6x² - 3x - 30 ← factor out 3 from each term
= 3(2x² - x - 10) ← factor the quadratic
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term
product = 2 × - 10 = - 20 and sum = - 1
The factors are + 4 and - 5
Use these factors to split the x- term
2x² + 4x - 5x - 10 ( factor the first/second and third/fourth terms )
= 2x(x + 2) - 5(x + 2) ← factor out (x + 2) from each term
= (x + 2)(2x - 5), thus
2x² - x - 10 = (x + 2)(2x - 5) and
6x² - 3x - 30
= 3(x + 2)(2x - 5) ← in factored form