The height of the can for this case is given by:
h = 40 mm
The radius of the can is given by:
r = (1 3/8) * h
Substituting values:
r = (1 3/8) * 40
r = 55 mm
Therefore, the diameter of the can is:
d = 2 * r
d = 2 * 55
d = 110 mm
Answer:
The diameter of the can will be:
d = 110 mm
Answer:
C
Step-by-step explanation:
Edge2021
Answer:
C, the set of all possible output values
Step-by-step explanation:
Range = Output
Answer:
I will answer in a general way because the options are not given.
We know that the area of model A is smaller than the area of model B.
For model A, we have 72 shaded sections, out of 100.
Then the quotient of model A is:
72/100 = 0.72
For model B we have 10 sections, and x shaded ones.
Because model B is greater than model A, we know that:
x/10 should be larger than 72/100
then we have the inequality:
x/10 > 0.72
x > 0.72*10
x > 7.2
And we can not have more than 10 shaded sections (because there is a total of 10 sections) then:
10 ≥ x > 7.2
Then x can be any whole number in that interval.
the possible values of x are:
x = 8
x = 9
x = 10
Answer:
10.
x P(X)
0 0.238
1 0.438
2 0.269
3 0.055
11.
0.707
There is 70.7% chance that at least one but at most two adults in the sample believes in the ghost
12.
1.14≅1
There will be one adult out of three we expect to believe in the ghost
Step-by-step explanation:
The probability distribution is constructed using binomial distribution.
We have to construct the probability distribution of the number adults believe in ghosts out of three adults. so,
x=0,1,2,3
n=3
p=probability of adults believe in ghosts=0.38
The binomial distribution formula
nCxp^xq^n-x=3cx0.38^x0.62^3-x
is computed for x=0,1,2,3 and the results depicts the probability distribution of the number adults believe in ghosts out of three adults.
x P(X)
0 0.238
1 0.438
2 0.269
3 0.055
11.
P(at least one but at most two adults in the sample believes in the ghost )= P(x=1)+P(x=2)=0.437+0.269=0.707
P(at least one but at most two adults in the sample believes in the ghost )=70.7%
12. E(x)=n*p
here n=3 adults and p=0.38
E(x)=3*0.38=1.14
so we expect one adult out of three will believe in the ghosts.