The answer is D I’m not really sure yet
Answer:
Δτ = 50 N.m
Explanation:
The torque applied on an object is given by the product of the force applied on it and the perpendicular distance between the force and the axis of rotation of the object. That is:
τ = F r
where,
τ = Torque applied on the object
F = Force applied on it
r = distance from axis of rotation
<u>FOR HANDLE SIDE OF DOOR</u>:
τ₁ = F r₁
where,
τ₁ = Torque applied on the object = ?
F = Force applied on it = 100 N
r₁ = distance from axis of rotation = 1 m
Therefore,
τ₁ = (100 N)(1 m)
τ₁ = 100 N.m
<u></u>
<u>FOR MIDDLE OF DOOR</u>:
τ₂ = F r₂
where,
τ₂ = Torque applied on the object = ?
F = Force applied on it = 100 N
r₂ = distance from axis of rotation = 1 m/2 = 0.5 m
Therefore,
τ₂ = (100 N)(0.5 m)
τ₂ = 50 N.m
Now, the difference between the amount of torque in both cases is:
Δτ = τ₁ - τ₂
Δτ = 100 N.m - 50 N.m
<u>Δτ = 50 N.m</u>
The work output of a machine can be anything, depending on the friction
and other losses internal to the machine. But it can never be MORE than
the work <u>input</u>.
I suppose you might say that the work output can never be less than zero,
because there's no such thing as negative energy.
The north arrow of the compasses will all point to the south since opposite poles attract. I have put an example picture below.
For the horse shoe magnet the magnetic field line will also go from north to south. I have put a picture of this below