To solve the problem, it is necessary to apply the concepts related to the change of mass flow for both entry and exit.
The general formula is defined by

Where,
mass flow rate
Density
V = Velocity
Our values are divided by inlet(1) and outlet(2) by





PART A) Applying the flow equation we have to



PART B) For the exit area we need to arrange the equation in function of Area, that is



Therefore the Area at the end is 
<em>Answer:</em>
<em>The answers are: </em>
- <em>A-which is the image is always right side up.</em>
- <em>E-the image is virtual</em>
<em></em>
<em>Explanation: MY EXPLANATION IS YOU ARE WELCOME BIG DOG 100..</em>
<em></em>
<h2 />
Answer:
The force is 
Explanation:
The moment of Inertia I is mathematically evaluated as

Substituting
for M(Mass of the wheel) and
for
(Radius of wheel)


The torque on the wheel due to net force is mathematically represented as

Substituting 135 N for
(Force acting on sprocket),
for
(radius of the chain) and F is the force acting on the sprocket due to the chain which is unknown for now

This same torque due to the net force is the also the torque that is required to rotate the wheel to have an angular acceleration of
and this torque can also be represented mathematically as

Now equating the two equation for torque
Making F the subject

Substituting values


Weight = (mass) x (gravity)
On Earth ...
Weight = (1 kg) x (9.8 m/s^2)
Weight = 9.8 Newtons