Answer:
I'm not sure, can you post any options?
The correlation coefficient of the health research institute data measures the relationship between the age and the years of the smokers
The correlation coefficient is 0.53
<h3>How to calculate the correlation coefficient</h3>
The correlation coefficient (r) is calculated as:
![r = \frac{n(\sum xy) - \sum x \sum y}{\sqrt{[n \sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2}}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7Bn%28%5Csum%20xy%29%20-%20%5Csum%20x%20%5Csum%20y%7D%7B%5Csqrt%7B%5Bn%20%5Csum%20x%5E2%20-%20%28%5Csum%20x%29%5E2%5D%5Bn%5Csum%20y%5E2%20-%20%28%5Csum%20y%29%5E2%7D%7D)
Using the given parameters, we have:
![r = \frac{20 *8249 - 1257* 116}{\sqrt{[20 * 98823 - 1257^2][20 * 836 - 116^2}}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7B20%20%2A8249%20-%201257%2A%20116%7D%7B%5Csqrt%7B%5B20%20%2A%2098823%20-%201257%5E2%5D%5B20%20%2A%20836%20-%20116%5E2%7D%7D)
Evaluate the exponents
![r = \frac{20 *8249 - 1257* 116}{\sqrt{[20 * 98823 - 1580049][20 * 836 - 13456}}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7B20%20%2A8249%20-%201257%2A%20116%7D%7B%5Csqrt%7B%5B20%20%2A%2098823%20-%201580049%5D%5B20%20%2A%20836%20-%2013456%7D%7D)
Evaluate the products
![r = \frac{164980 - 145812}{\sqrt{[1976460 - 1580049][16720 - 13456}}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7B164980%20-%20145812%7D%7B%5Csqrt%7B%5B1976460%20-%201580049%5D%5B16720%20-%2013456%7D%7D)
Evaluate the differences

Evaluate the product

Evaluate the root

Evaluate the quotient

Hence, the correlation coefficient is 0.53
Read more about correlation coefficient at:
brainly.com/question/1564293
Answer: x= 207.8873386
Step-by-step explanation:
expecting both 2x-15 and 3x are angles in radiant, let's draw a rhombus ABCD
∠ABC = 2x-15
∠ BCD = 3x
∠ABC + < BCD= π ( 180° in radiant)
2x - 15 + 3x = π
5x - 15 = π
x - 3 = 1/5π
= 3.628318531 = 207.8873386
2x−15°+3x=180
5x-15°=180
5x=195°
x=39°
The measure of the intercepted arc is twice the measure of the tangent-chord angle:
2×74° = 148°
The measure of the intercepted arc is 148°.
Expression in simplest form represents the weigt