Answer:
9.89 m/s.
Explanation:
Given that,
The radius of the circular arc, r = 25 m
The acceleration of the vehicle is 0.40 times the free-fall acceleration i.e.,a = 0.4(9.8) = 3.92 m/s²
Let v is the maximum speed at which you should drive through this turn. It can be solved as follows :

So, the maximum speed of the car should be 9.89 m/s.
Your answer would be B love!
Answer:

Explanation:
The cabinet does not move: this means that the net force acting on it is zero.
Along the horizontal direction, we have two forces:
- The push exerted by Bob, F = 200 N, forward
- The frictional force,
, which acts in the opposite direction (backward)
Since the net force must be zero, we have:

So solving the equation we can find the magnitude of the friction force:

When the life preserver is dropped from the helicopter, the only force acting on the object is the gravitational force. This modifies the equations of motion. Thus, the working equation is written below:
h = vt + 0.5gt²
where
v is the initial velocity
g is the acceleration due to gravity equal to 9.81 m/s²
h is the height of the fall
h = (1.46 m/s)(1.8 s) + 0.5(9.81 m/s²)(1.8 s)
h = 11.457 m
Answer:
the potentail of kinetic and potential energy
Explanation:
first explain the concept of kinetic energy (what it is and what its used for) and give examples (cars, a basketball thrown across a hall, and airplane), and do the same with potential energy (the energy an object stores, example: a streched rubber band)