The answer is A. Minutes per gallon, because the independent quantity is the gallons
Answer:
voltage= 17.88volts
current= 0.04 amps
Explanation:
Step one:
given data
resistance R=400 ohms
Power P= 0.8W
a. What is the maximum voltage that can be applied across this resistor without damaging it?
the expression relating power and voltage is
P=V^2/R
substituting we have
0.8=V^2/400
V^2=0.8*400
V^2=320
V=√320
V=17.88 volts
the maximum voltage is 17.88volts
b.What is the maximum current it can draw?
we know that from Ohm' law
V=IR
17.88=I*400
I=17.88/400
I=0.04amps
Answer:
(a) 348.4 m
(b) 256.7 m/s
(c) 127.2 m/s^2
Explanation:

(a) at t = 4 s
x = 2.3 x 4 + 5.3 x 4 x 4 x 4
x = 348.4 m
(b) The derivative of displacement function gives the value of instantaneous velocity.
So, v = dx / dt = 2.3 + 5.3 x 3 x t^2
v = 2.3 + 15.9 t^2
Put t = 4 s
So, v = 2.3 + 15.9 x 4 x 4
v = 256.7 m/s
(c) The derivative of velocity function with respect to time gives the value of instantaneous acceleration.
So, a = dv / dt = 5.3 x 3 x 2 x t
a = 31.8 t
Put t = 4 s
a = 31.8 x 4 = 127.2 m/s^2
Answer:
D.They are equal in magnitude and opposite in direction
Explanation:
- Newton's third law states that the action force is always associated with a reaction force.
- When a body 'A' exerts a force on body 'B', it is called the force of action.
- When the body 'B' in turn resist the force of 'A' is called the reaction force. It is the reactive force acted upon by the body 'B' on 'A'.
- This reaction force is equal in magnitude of the action force.
- If the two bodies remain in the same horizontal line, the 'A' exerts a force in the direction towards 'B' and the body 'B' exerts a reaction force in the direction towards 'A'.
- Hence, the two forces that are exerted by the bodies are equal in magnitude and opposite in direction.
Nevermind that one i dont know sorry