Answer:
The log-mean-temperature-difference is 24.03⁰C
Step-by-step explanation:
First we need to know if the heat exchanger is in parallel flow or counter-flow. However, counter flow arrangement is best used to recover heat.
L.M.T.D for counter flow is given as;
![L.M.T.D =\frac{(T_h_f_1 -T_c_f_2)-(T_h_f_2 -T_c_f_1)}{2.3log[\frac{T_h_f_1 -T_c_f_2}{T_h_f_2 -T_c_f_1}]}](https://tex.z-dn.net/?f=L.M.T.D%20%3D%5Cfrac%7B%28T_h_f_1%20-T_c_f_2%29-%28T_h_f_2%20-T_c_f_1%29%7D%7B2.3log%5B%5Cfrac%7BT_h_f_1%20-T_c_f_2%7D%7BT_h_f_2%20-T_c_f_1%7D%5D%7D)
where;
Thf₁ is the initial temperature of the hot fluid = 80°C
Tcf₂ is the final temperature of the cold fluid = 51.5°C
Thf₁ - Tcf₂ = 80 - 51.5 = 28.5⁰C
Thf₂ is the final temperature of the hot fluid = 30°C
Tcf₁ is the initial temperature of the cold fluid = 10°C
Thf₂ - Tcf₁ = 30 - 10 = 20⁰C
![L.M.T.D = \frac{28.5 -20}{2.3Log[\frac{28.5}{20}]} \\\\L.M.T.D = \frac{8.5}{0.3538} =24.03^oC](https://tex.z-dn.net/?f=L.M.T.D%20%3D%20%5Cfrac%7B28.5%20-20%7D%7B2.3Log%5B%5Cfrac%7B28.5%7D%7B20%7D%5D%7D%20%5C%5C%5C%5CL.M.T.D%20%3D%20%5Cfrac%7B8.5%7D%7B0.3538%7D%20%3D24.03%5EoC)
Therefore, the log-mean-temperature-difference is 24.03⁰C
Answer:
f(x) is linear
g(x) is exponential
Step-by-step explanation:
A linear function will always have the same rate of change between equally distant points, while an exponential function will have an increasingly large rate of change between equally distant points.
First, look at f(x). All these points are equally distant at 2 units apart on the x-axis, so they can be directly compared:

All of these points are the same distance apart on the y, so f(x) must be a linear function.
Now look at g(x). These are also all equally distant at only 1 unit apart.

These are very clearly not the same distance apart on the y, so g(x) must be the exponential function.
Answer:
WHY MUST I CRYYYYY
Step-by-step explanation:
The volume of a rectangular prism is given by the multiplication of its three dimensions: if
are the width, height and length of the prism, the volume is

So, in your case, you have
