Answer:
Alright, sure thing.
Explanation:
These phases are prophase, prometaphase, metaphase, anaphase, and telophase.
Answer:
Hepato- and nephrotoxicity of fluoride have been demonstrated in animals, but few studies have examined potential effects in humans. This population-based study examines the relationship between chronic low-level fluoride exposure and kidney and liver function among United States (U.S.) adolescents. This study aimed to evaluate whether greater fluoride exposure is associated with altered kidney and liver parameters among U.S. youth.
This cross-sectional study utilized data from the National Health and Nutrition Examination Survey (2013–2016). We analyzed data from 1983 and 1742 adolescents who had plasma and water fluoride measures respectively and did not have kidney disease. Fluoride was measured in plasma and household tap water. Kidney parameters included estimated glomerular filtration rate (calculated by the original Schwartz formula), serum uric acid, and the urinary albumin to creatinine ratio. Liver parameters were assessed in serum and included alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, blood urea nitrogen, gamma-glutamyl transferase, and albumin. Survey-weighted linear regression examined relationships between fluoride exposure and kidney and liver parameters after covariate adjustment. A Holm-Bonferroni correction accounted for multiple comparisons.
The average age of adolescents was 15.4 years. Median water and plasma fluoride concentrations were 0.48 mg/L and 0.33 μmol/L respectively. A 1 μmol/L increase in plasma fluoride was associated with a 10.36 mL/min/1.73 m2 lower estimated glomerular filtration rate (95% CI: −17.50, −3.22; p = 0.05), a 0.29 mg/dL higher serum uric acid concentration (95% CI: 0.09, 0.50; p = 0.05), and a 1.29 mg/dL lower blood urea nitrogen concentration (95%CI: −1.87, −0.70; p < 0.001). A 1 mg/L increase in water fluoride was associated with a 0.93 mg/dL lower blood urea nitrogen concentration (95% CI: −1.44, −0.42; p = 0.007).
Fluoride exposure may contribute to complex changes in kidney and liver related parameters among U.S. adolescents. As the study is cross-sectional, reverse causality cannot be ruled out; therefore, altered kidney and/or liver function may impact bodily fluoride absorption and metabolic processes.
hope this helps
rate brainiest
3. <span>They bloom at night.
4. </span><span>hunting in packs
5. </span><span>sleeping
Hope this helps!</span>
Answer:
Seminal vesicle
Explanation:
Seminal vesicle secretes an alkaline and viscous fluid that constitutes about 60% of the volume of semen. The fluid secreted by seminal vesicle contains fructose which is a monosaccharide sugar, prostaglandins, and clotting proteins. The alkaline nature of the seminal fluid neutralizes the acidic environment of the male urethra and the female reproductive tract. This is required as the acidic conditions inactivate and kill sperm.
The fructose sugar serves a fuel for ATP production by sperm. Prostaglandins are responsible for sperm motility and viability as they stimulate smooth muscle contractions within the female reproductive tract. Therefore, a malfunctioning seminal vesicle would result in low semen volume and reduced motility due to the scarcity of energy.
Answer:
B) nuclei of gland cells.
Explanation:
DNA carries the blueprint for the production of all the proteins including enzymes in human beings. Humans are eukaryotes and their DNA is present in the nucleus of their cells. All the cells that make the complex human body are derived from division in the zygote and therefore, are genetically identical and have the same DNA.
However, gene expression is regulated by the expression of specific genes in specific cells and at a different time of developmental stages. Amylase is the enzyme that digests starch in humans. Amylase is secreted by salivary glands. So, the nuclei of these glands would have genetic information for the synthesis of amylase.