Answer:
The value of f(z) is not constant in any neighbourhood of D. The proof is as explained in the explaination.
Step-by-step explanation:
Given
For any given function f(z), it is analytic and not constant throughout a domain D
To Prove
The function f(z) is non-constant constant in the neighbourhood lying in D.
Proof
1-Assume that the value of f(z) is analytic and has a constant throughout some neighbourhood in D which is ω₀
2-Now consider another function F₁(z) where
F₁(z)=f(z)-ω₀
3-As f(z) is analytic throughout D and F₁(z) is a difference of an analytic function and a constant so it is also an analytic function.
4-Assume that the value of F₁(z) is 0 throughout the domain D thus F₁(z)≡0 in domain D.
5-Replacing value of F₁(z) in the above gives:
F₁(z)≡0 in domain D
f(z)-ω₀≡0 in domain D
f(z)≡0+ω₀ in domain D
f(z)≡ω₀ in domain D
So this indicates that the value of f(z) for all values in domain D is a constant ω₀.
This contradicts with the initial given statement, where the value of f(z) is not constant thus the assumption is wrong and the value of f(z) is not constant in any neighbourhood of D.
Let;
A(-8,6) B(6,6) C(6, -4) D(-8, -4)
Let's find the length AB
x₁= -8 y₁=6 x₂=6 y₂=6
We will use the distance formula;
![d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%5B%5D%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D)
![=\sqrt[]{(6+8)^2+(6-6)^2}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B%5D%7B%286%2B8%29%5E2%2B%286-6%29%5E2%7D)
![=\sqrt[]{14^2+0}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B%5D%7B14%5E2%2B0%7D)

Next, we will find the width BC
B(6,6) C(6, -4)
x₁= 6 y₁=6 x₂=6 y₂=-4
substitute into the distance formula;
![d=\sqrt[]{(6-6)^2+(-4-6)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%5B%5D%7B%286-6%29%5E2%2B%28-4-6%29%5E2%7D)
![=\sqrt[]{(-10)^2}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B%5D%7B%28-10%29%5E2%7D)
![=\sqrt[]{100}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B%5D%7B100%7D)

Area = l x w
= 14 x 10
= 140 square units
Answer:
16.3 years
Step-by-step explanation:
1 ha = 10,000 m^2
The total capacity of the landfill is:

If waste is compacted to twice its delivered density, its volume is half of the delivered volume. Assuming that a year has 52 weeks, the volume of compacted solid waste dumped per year is:

The expected life of the landfill is given by its capacity divided by the yearly volume:

The landfill has an expected life of 16.3 years.