A 4th degree polynomial will have at most 3 extreme values. Since the degree is even, there will be one global extreme, with possible multiplicity. The remainder, if any, will be local extremes that may be coincident with each other and/or the global extreme.
(The number of extremes corresponds to the degree of the derivative, which is 1 less than the degree of the polynomial.)
Answer:
(y-12)/4
Step-by-step explanation:
If g(x) is the inverse of f(x)
and f(x) = 4x + 12
f⁻¹(x) = g(x)
let f(x) be represented as y
f(x)
= y
y = 4x + 12
subtract 12 from both sides
y-12= 4x
divide both sides by 4
(y-12)/4 = x
so f ⁻¹ (y)= (y-12)/4 so g(x) = (x-12)/4
Maybe u should try a graph
Answer:
Hello! A function is easily identified when an x value does not have more than 1 y value. a y value can have as many x values to infinity, but x can only have one y.
Example...
x y
3 5
4 5
1 2