Answer:
f(2n)-f(n)=log2
b.lg(lg2+lgn)-lglgn
c. f(2n)/f(n)=2
d.2nlg2+nlgn
e.f(2n)/(n)=4
f.f(2n)/f(n)=8
g. f(2n)/f(n)=2
Step-by-step explanation:
What is the effect in the time required to solve a prob- lem when you double the size of the input from n to 2n, assuming that the number of milliseconds the algorithm uses to solve the problem with input size n is each of these function? [Express your answer in the simplest form pos- sible, either as a ratio or a difference. Your answer may be a function of n or a constant.]
from a
f(n)=logn
f(2n)=lg(2n)
f(2n)-f(n)=log2n-logn
lo(2*n)=lg2+lgn-lgn
f(2n)-f(n)=lg2+lgn-lgn
f(2n)-f(n)=log2
2.f(n)=lglgn
F(2n)=lglg2n
f(2n)-f(n)=lglg2n-lglgn
lg2n=lg2+lgn
lg(lg2+lgn)-lglgn
3.f(n)=100n
f(2n)=100(2n)
f(2n)/f(n)=200n/100n
f(2n)/f(n)=2
the time will double
4.f(n)=nlgn
f(2n)=2nlg2n
f(2n)-f(n)=2nlg2n-nlgn
f(2n)-f(n)=2n(lg2+lgn)-nlgn
2nLg2+2nlgn-nlgn
2nlg2+nlgn
5.we shall look for the ratio
f(n)=n^2
f(2n)=2n^2
f(2n)/(n)=2n^2/n^2
f(2n)/(n)=4n^2/n^2
f(2n)/(n)=4
the time will be times 4 the initial tiote tat ratio are used because it will be easier to calculate and compare
6.n^3
f(n)=n^3
f(2n)=(2n)^3
f(2n)/f(n)=(2n)^3/n^3
f(2n)/f(n)=8
the ratio will be times 8 the initial
7.2n
f(n)=2n
f(2n)=2(2n)
f(2n)/f(n)=2(2n)/2n
f(2n)/f(n)=2
Answer: The amount of salt in the tank after 8 minutes is 36.52 pounds.
Step-by-step explanation:
Salt in the tank is modelled by the Principle of Mass Conservation, which states:
(Salt mass rate per unit time to the tank) - (Salt mass per unit time from the tank) = (Salt accumulation rate of the tank)
Flow is measured as the product of salt concentration and flow. A well stirred mixture means that salt concentrations within tank and in the output mass flow are the same. Inflow salt concentration remains constant. Hence:

By expanding the previous equation:

The tank capacity and capacity rate of change given in gallons and gallons per minute are, respectivelly:

Since there is no accumulation within the tank, expression is simplified to this:

By rearranging the expression, it is noticed the presence of a First-Order Non-Homogeneous Linear Ordinary Differential Equation:
, where
.

The solution of this equation is:

The salt concentration after 8 minutes is:

The instantaneous amount of salt in the tank is:
Answer:
Option a) f(x)=x^2
Step-by-step explanation:
The parent function that can be used to graph the function f(x)=-9(x+5)^2 is f(x)=x^2
Answer:
210 in²
Step-by-step explanation:
6*2.5+6*6*2+(8+6)*2.5+10*2.5+1/2*6*8*2+6*2.5= 210 in²