1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DanielleElmas [232]
2 years ago
5

Help me pls ☹️☹️☹️☹️☹️☹️☹️☹️☹️☹️☹️☹️☹️☹️☹️☹️☹️☹️☹️

Mathematics
2 answers:
mylen [45]2 years ago
7 0

Answer:

0.85 < 8/9 < 0.92

Step-by-step explanation:

Hope this helps!!

Viefleur [7K]2 years ago
4 0

Answer:

It's 8/9 I think but please correct me if I am wrong.

You might be interested in
4/5 + 2/3 =<br>1 1/2-2/6=​
sammy [17]

Answer:

22/15

7/6

Step-by-step explanation:

Have a blessed day

6 0
3 years ago
Read 2 more answers
HELP!!! Need Help With Homework!
Airida [17]

Answer:

<1 and <2

<5 and<6

<4 and <2

3 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
What is the area of a circle with a radius of 42 inches?<br> in²<br> (Use 3.14 for Pi.)
TEA [102]

Answer:

Area of circle = π r ^ 2

= 3.14 × ( 42) ^ 2

= 5538.96 in^2

If you need any other help , please let me know ! [ you'll have to pay btw]

3 0
2 years ago
What is 3/5 + 1/2? As in fractions, I can’t figure it out!! :(
ella [17]

Step-by-step explanation:

\frac{3}{5}  +  \frac{1}{2}  \\  \\  =  \frac{3 \times 2 + 1 \times 5}{5 \times 2}  \\  \\  =  \frac{6 + 5}{10}  \\  \\  =  \frac{11}{10}  \\  \\  = 1 \frac{1}{10}

5 0
3 years ago
Read 2 more answers
Other questions:
  • A weather station in a major city in the Northwest kept data about the weather conditions over the past year. The probabilities
    13·2 answers
  • An article in the National Geographic News ("U.S. Racking Up Huge Sleep Debt," February 24, 2005) argues that Americans are incr
    9·2 answers
  • A sofa is on sale for 29% off. the sale price is $355 . what is the regular price?
    8·1 answer
  • What do I do if my friend wants me to play game, but I have work to do instead?
    6·2 answers
  • ( see picture please )
    14·2 answers
  • Cards in a pack are black or red in the ratio
    5·1 answer
  • Monique is paid p dollars monthly. She also receives a bonus of $5,500 once a year. Write an expression to
    6·1 answer
  • Solve please....................
    12·2 answers
  • A lil help , What is g(h(10))?
    9·1 answer
  • Help me on this math problem!! DUR TONIGHT!!(read all the instructions on the photo so you have all the needed answers)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!