Answer:
9.6 km/h
Explanation:
20 minutes=1/3 minute.
The speed of the bicycle: 3.2:1/3=9.6 km/h.
Answer: 9.6 km/h
Answer:
A. 11.5 m
Explanation:
Given,
The initial velocity of the soda cap, u = 15 m/s
The soda bottle cap is projected vertically upwards,
Hence, the angle formed with the ground, Ф = 90°
The maximum height of the projectile is given by the formula,

Substituting the given values in the above equation

= 11.5 m
Hence, the maximum height of the cap is h = 11.5 m
Answer:
The ice melts mass is:

Explanation:
Kinetic Energy



Heat gained by ice= mass(g) x 80 cal
( 1 cal = 4.184 *10^7er or g cm^2/ sec^2)
Assuming no loss in heat, in the motion so both continue with temperature 0~C
To find so the mass (gm) of ice melted


Answer:
The answer is
<h2>28 kg</h2>
Explanation:
The mass of an object given it's momentum and velocity / speed can be found by using the formula

where
m is the mass
p is the momentum
v is the speed or velocity
From the question
p = 280 kg/ms
v = 10 m/s
The mass of the object is

We have the final answer as
<h3>28 kg</h3>
Hope this helps you
Clever problem.
We know that the beat frequency is the DIFFERENCE between the frequencies of the two tuning forks. So if Fork-A is 256 Hz and the beat is 6 Hz, then Fork-B has to be EITHER 250 Hz OR 262 Hz. But which one is it ?
Well, loading Fork-B with wax increases its mass and makes it vibrate SLOWER, and when that happens, the beat drops to 5 Hz. That means that when Fork-B slowed down, its frequency got CLOSER to the frequency of Fork-A ... their DIFFERENCE dropped from 6 Hz to 5 Hz.
If slowing down Fork-B pushed it CLOSER to the frequency of Fork-A, then its natural frequency must be ABOVE Fork-A.
The natural frequency of Fork-B, after it gets cleaned up and returns to its normal condition, is 262 Hz. While it was loaded with wax, it was 261 Hz.