Answer
given,
L(t) = 10 - 3.5 t
mass of particle = 2 Kg
radius of the circle = 3.1 m
a) torque
τ = 
τ = 
τ = -3.5 N.m
Particle rotates clockwise as i look down the plane. Hence, its angular velocity is downward.
L decreases the angular acceleration upward. so, net torque is upward.
b) Moment of inertia of the particle
I = m R^2
I = 2 x 3.1²
I = 19.22 kg.m²
L = I ω
ω = 
ω = 
ω = 
A = 0.52 rad/s B = -0.182 rad/s²
Answer:
Acceleration is the change in velocity divided by time
Explanation:
This is the correct answer because distance divided by time is the position. Speed multiplied by time is the distance. And acceleration is not just velocity, but the change in velocity over time.
The answer is Alternating Current
Answer:

Explanation:
Given:
Solute Diffusion rate = 4.0 × 10⁻¹¹ kg/s
Area of cross-section = 0.50 cm²
Length of channel =0.25 cm
Now for the new channel
Area of cross-section = 0.30 cm²
Length of channel =0.10 cm
let the Solute Diffusion rate of new channel = s
now equating the diffusion rate per unit volume for both the channels

thus,

(a) The angular acceleration of the wheel is given by

where

and

are the initial and final angular speed of the wheel, and t the time.
In our problem, the initial angular speed is zero (the wheel starts from rest), so the angular acceleration is

(b) The wheel is moving by uniformly rotational accelerated motion, so the angle it covered after a time t is given by

where

is the initial angular speed. So, the angle covered after a time t=3.07 s is