Answer:
a).β=0.53
T
a).β=0.40
T
Explanation:
The magnetic field at distance 'r' from the center of toroid is given by:

a).

b).
The distance is the radius add the cross section so:




Answer: A 100-lb child stands on a scale while riding in an elevator. Then, the scale reading approaches to 100lb, while the elevator slows to stop at the lowest floor
Explanation: To find the correct answer, we need to know more about the apparent weight of a body in a lift.
<h3>What is the apparent weight of a body in a lift?</h3>
- Consider a body of mass m kept on a weighing machine in a lift.
- The readings on the machine is the force exerted by the body on the machine(action), which is equal to the force exerted by the machine on the body(reaction).
- The reaction we get as the weight recorded by the machine, and it is called the apparent weight.
<h3>How to solve the question?</h3>
- Here we have given with the actual weight of the body as 100lbs.
- This 100lb child is standing on the scale or the weighing machine, when it is riding .
- During this condition, the acceleration of the lift is towards downward, and thus, a force of ma .
- There is also<em> mg </em>downwards and a normal reaction in the upward direction.
- when we equate both the upward force and downward force, we get,
i.e. during riding the scale reads a weight less than that of actual weight.
- When the lift goes slow and stops the lowest floor, then the acceleration will be approaches to zero.
Thus, from the above explanation, it is clear that ,when the elevator moves to the lowest floor slowly and stops, then the apparent weight will become the actual weight.
Learn more about the apparent weight of the body in a lift here:
brainly.com/question/28045397
#SPJ4
The region where warm and cold air masses meet is called a front
Answer:
Time taken to reach final velocity = 5.5 second
Explanation:
Given:
Initial velocity (Starting from rest)(u) = 0 m/s
Acceleration of ball (a) = 1 m/s²
Final velocity (v) = 5.5 m/s
Find:
Time taken to reach final velocity
Computation:
Using first equation of motion;
v = u + at
where,
v = final velocity
u = initial velocity
a = acceleration
t = time taken
5.5 = 0 + (1)(t)
5.5 = t
Time taken to reach final velocity = 5.5 second
Answer:
pressure = density x g x height
= 1000 x 10 x 6 Pascal
=60000 Pascal
OR 60 kP