Answer:
One can determine the specific heat of the metal through using the clarimeter, water, thermometer and using heat equations.
Explanation:
You can learn about heat effects and calorimetery through a simple experiment by boiling water and heating up the metal in it. Then, pour it into your calorimeter and the heat will flow from the metal to the water. The two equlibria will meet: the metal will loose heat into its surroundings (the water) and teh water will absorb the heat. The heat flow for the water is the same as it is for the metal, the only difference being is the negative sign indicating the loss of the heat of the metal.
In terms of theromdynamics, we can deteremine the heat flow for the metal becasue it would be equal to the mangnitued but opposite in direction. Thus, we can say that the specific heat of water qH2O = -qmetal.
Answer:
Francium (Fr)
Explanation:
Looking at the periodic table, Francium has 7 energy levels as it is in the 7th Period and is in the 1st Group (meaning it has one electron in the outermost shell) which suggests that it has one valence electron.
<em>Hope this helps and be sure to have a wonderful time ahead at Brainly! :D</em>
It’s ionic
KCl(at)
Potassium chloride
Color they look the same hope this helps.
Q=m(c∆t +heat of fusion + heat of evaporation)
m= 44g
c= 4.186 J/g.C
∆t= 107-(-8) =115 C
heat of fusion= 333.55 J/g
heat of evaporation=2260 J/g
Q=44(4.186*115 + 333.55 + 2260)
Q= 135297.36 J