Legumes are much easier to grow than other plants, and are more adaptable.
a)
A: Copper
B: CuO
C: 
D: $\mathrm{CuCO_3}$
E: $\mathrm{CO_2}$
F: $\mathrm{Cu(NO_3)_2}$
b)
$\mathrm{CuO+ H_2SO_4}\rightarrow \mathrm{CuSO_4 + H_2O}$
c)
$\mathrm{CuCO_3+ 2HNO_3}\rightarrow \mathrm{Cu(NO_3)_2+ CO_2+ H_2O}$
Answer:
the proton and the neutron
Explanation:
mass of The proton is approximately 1.6726 × 10^-27 Kg
mass of the electron is approximately 9.109 × 10^-31 Kg
mass of the neutron is approximately 1.6749 × 10^-27 Kg
Here we see that mass of proton and neutron is approximately similar.
_____________________________________________
Lets see what is the mass of these particle IN atm unit
mass of these particles can also be described in form of amu(atomic mass unit)
1 atm is the mass defined as 1/12 th of mass of the carbon-12(c-12) atom.
In terms of unit atm
mass of proton = 1 amu
mass of electron = 5.45 × 10−4 amu
mass of neutron = 1 amu
hence we can say that mass of proton = mass of neutron.
mass of atom is sum of mass of all the neutron and proton in the atom.
Hence, mass of neturon and atom cannot be equal.
This makes option four the neutron and the atom , the wrong choice.
correct answer is the proton and the neutron
therefore, An atom contains one proton , one electron and one neutron then, mass of proton is similar in mass of neutron.
Answer:
58.443 g/mol
Explanation:
The molar mass of NaCl is the sum of the molar masses of the individual atoms:
Na: 22.989770 g/mol
Cl: 35.453 g/mol
The total molar mass is ...
NaCl: 58.443 g/mol
__
The molar mass does not depend on whether the material is in solution or in any other form.
<h2>
Answer: 6 moles</h2>
<h3>
Explanation:</h3>
3 H₂ + N₂ → 2 NH₃
↓ ↓
4 mol 3 mol
Since the moles of N₂ is the smaller of the two reactants, then N₂ is the limiting factor (the reactant that will decide how much ammonia is produced since it has the smaller amount of moles). ∴ we have to use it in calculating the number of moles of ammonia
The mole ratio of N₂ to NH₃ based on the balanced equation is 1 to 2.
∴ the moles of NH₃ = moles of N₂ × 2
= 3 moles × 2
= 6 moles