For the first line we have a slope of (y2-y1)/(x2-x1)
(2--2)/(1--1)=4/2=2 so we have:
y=2x+b, now solve for b with either of the points, I'll use: (1,2)
2=2(1)+b
b=0 so the first line is:
y=2x
Now the second line:
(1-10)/(4--2)=-9/6=-3/2 so far then we have:
y=-3x/2+b, using point (4,1) we solve for b...
1=-3(4)/2+b
1=-6+b
b=7 so
y=-3x/2+7 or more neatly...
y=(-3x+14)/2
...
The solution occurs when both the x and y coordinates for each are equal, so we can say y=y, and use our two line equations...
2x=(-3x+14)/2
4x=-3x+14
7x=14
x=2, and using y=2x we see that:
y=2(2)=4, so the solution occurs at the point:
(2,4)
Answer:
-1/2
Step-by-step explanation:
We have the equation:

We know two points and we will use them to calculate the parameters a and b.
The point (0,3) will let us know a, as b^0=1.

Now, we use the point (2, 108/25) to calcualte b:
![\begin{gathered} y=3\cdot b^x \\ \frac{108}{25}=3\cdot b^2 \\ 3\cdot b^2=\frac{108}{25} \\ b^2=\frac{108}{25\cdot3}=\frac{108}{3}\cdot\frac{1}{25}=\frac{36}{25} \\ b=\sqrt[]{\frac{36}{25}} \\ b=\frac{\sqrt[]{36}}{\sqrt[]{25}} \\ b=\frac{6}{5} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20y%3D3%5Ccdot%20b%5Ex%20%5C%5C%20%5Cfrac%7B108%7D%7B25%7D%3D3%5Ccdot%20b%5E2%20%5C%5C%203%5Ccdot%20b%5E2%3D%5Cfrac%7B108%7D%7B25%7D%20%5C%5C%20b%5E2%3D%5Cfrac%7B108%7D%7B25%5Ccdot3%7D%3D%5Cfrac%7B108%7D%7B3%7D%5Ccdot%5Cfrac%7B1%7D%7B25%7D%3D%5Cfrac%7B36%7D%7B25%7D%20%5C%5C%20b%3D%5Csqrt%5B%5D%7B%5Cfrac%7B36%7D%7B25%7D%7D%20%5C%5C%20b%3D%5Cfrac%7B%5Csqrt%5B%5D%7B36%7D%7D%7B%5Csqrt%5B%5D%7B25%7D%7D%20%5C%5C%20b%3D%5Cfrac%7B6%7D%7B5%7D%20%5Cend%7Bgathered%7D)
Then, we can write the equation as:
Answer:
76
Step-by-step explanation:
let the number be x
Then 16 + x/-4 = -3, so
x/-4 = -16-3 = -19 (add -16 on both sides)
x = -4*-19 = 76 (multiply by -4 on both sides)