Answer:
37.5m/s
Explanation:
momentum = mass x velocity
momentum / mass = velocity = speed
75kg*m/s / 2kg = 37.5m/s
B) a glow stick , glow sticks are made up of certain chemicals and when they fuse together they start to glow which would be considered as light energy
Answer:
t=20s
Explanation:
To solve this problem we must apply the first law of thermodynamics, which indicates that the energy that enters a system is the same that must come out, resulting in the following equation
For this problem we will assume that the water is in a liquid state, since it is a domestic refrigerator
q=m.cp.(T2-T1)
q=heat
m=mass of water =600g=0.6Kg
cp=
specific heat of water=4186J/kgK
T2=temperature in state 2=20°C
T1=temperature in state 1=0°C
solving:
q=(0.6)(4186)(20-0)=50232J
A refrigerator is a device that allows heat to be removed to an enclosure (Qin), by means of the input of an electrical energy (W) and the heat output (Qout), the coefficient of performance COP, allows to know the ratio between the heat removed ( Qin) and the added electrical power (W), the equation for the COP is

To solve this exercise we must know the value of the heat removed to the water (Qin)
solving for Qin
Qin=(COP)(Win)
Qin=(5)(500W)=2500W
finally we remember that the definition of power is the ratio of work over time
w=work
p=power=500w

______________________________
Answer: The nearest position of an object from a normal human eye so that its image is formed on retina is 25 CM. If the object is placed at a distance less than 25 CM, then the blurred image of the object is formed on retina as the focal length of a lens cannot be decreased below a certain limit. Hence we cannot see it clearly.
______________________________
Answer:
4.0 m/s
Explanation:
The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.
Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is

where here we have
d = 3.0 m is the horizontal distance covered
vx is the horizontal velocity
t = 1.3 s is the duration of the fall
Solving for vx,

Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by

where
h = 4.0 m is the initial height
vy is the initial vertical velocity
We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy

So now we can find the magnitude of the initial velocity:
