Answer:
Explanation:
Potential energy is the energy stored within an object, due to the object's position, arrangement or state
Answer:
3054.4 km/h
Explanation:
Using the conservation of momentum
momentum before separation = 5M × 2980 Km/h where M represent the mass of the module while 4 M represent the mass of the motor
initial momentum = 14900 M km/h
let v be the new speed of the motor so that the
new momentum = 4Mv and the new momentum of the module = M ( v + 94 km/h )
total momentum = 4Mv + Mv + 93 M = 5 Mv + 93M
initial momentum = final momentum
14900 M km/h = 5 Mv + 93M
14900 km/h = 5v + 93
14900 - 93 = 5v
v = 2961.4 km/h
the speed of the module = 2961.4 + 93 = 3054.4 km/h
Answer:
585×10⁸ m
Explanation:
Distance = rate × time
d = (2.998×10⁸ m/s) (3.25 min) (60 s/min)
d = 585×10⁸ m
They seem to cancel each other out which is odd
Answer:
The answer is 2,416 m/s. Let's jump in.
Explanation:
We do work with the amount of energy we can transfer to objects. According to energy theory:
W = ΔE
Also as we know W = F.x
We choose our reference point as a horizontal line at the block's rest point.<u> At the rest, block doesn't have kinetic energy</u> and <u>since it is on the reference point(as we decided) it also has no potential energy.</u>
Under the force block gains;
W = F.x → 
In the second position block has both kinetic and potential energy. Following the law of conservation of energy;
W = ΔE = Kinetic energy + Potantial Energy
W = ΔE = 
Here we can find h in the triangle i draw in the picture using sine theorem;
In a triangle 
In our situation
→ 
Therefore

→ 