Answer:
Due to brown knob which controls its angle.
Explanation:
When water comes out at an angle instead of going straight up, water does not shoot as high as before because its speed is controlled by the brown knob in order to throw water in another angle. If we adjust the brown knob present at the opening of hose pipe in a straight angle the water shoot very high because water moves with high pressure and no barrier is present between its way.
Take the moment car A starts to accelerate to be the origin. Then car A has position at time <em>t</em>
<em>x</em> = (20.0 m/s) <em>t</em> + 1/2 (2.10 m/s²) <em>t</em>²
and car B's position is given by
<em>x</em> = 300 m + (27.0 m/s) <em>t</em>
<em />
Car A overtakes car B at the moment their positions are equal:
(20.0 m/s) <em>t</em> + 1/2 (2.10 m/s²) <em>t</em>² = 300 m + (27.0 m/s) <em>t</em>
300 m + (7.00 m/s) <em>t</em> - (1.05 m/s²) <em>t</em>² = 0
==> <em>t</em> ≈ 20.6 s
Answer:
+1.46×10¯⁶ C
Explanation:
From the question given above, the following data were obtained:
Charge 1 (q₁) = +26.3 μC = +26.3×10¯⁶ C
Force (F) = 0.615 N
Distance apart (r) = 0.750 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Charge 2 (q₂) =?
The value of the second charge can be obtained as follow:
F = Kq₁q₂ / r²
0.615 = 9×10⁹ × 26.3×10¯⁶ × q₂ / 0.750²
0.615 = 236700 × q₂ / 0.5625
Cross multiply
236700 × q₂ = 0.615 × 0.5625
Divide both side by 236700
q₂ = (0.615 × 0.5625) / 236700
q₂ = +1.46×10¯⁶ C
NOTE: The force between them is repulsive as stated from the question. This means that both charge has the same sign. Since the first charge has a positive sign, the second charge also has a positive sign. Thus, the value of the second charge is +1.46×10¯⁶ C