Answer:
Explanation:
Given that on the tree the gravitational energy stored is 8J
Then, mgh = 8J.
The apple begins to fall and hit the ground, what is the maximum kinetic energy?
Using conservation of energy, as the above is about to hit the ground, the apple is at is maximum speed, and the height then is 0m, so the potential energy at the ground is zero, so all the potential of the apple at the too of the tree is converted to kinetic energy as it is about to hits the ground. Along the way to the ground, both the Kinetic energy and potential energy is conserved, it is notice that at the top of the tree, the apple has only potential energy since velocity is zero at top, and at the bottom of the tree the apple has only kinetic energy since potential energy is zero(height=0)
So,
K.E(max) = 8J
It had better be a vector, otherwise there's be no excuse for calling it a "velocity". It would just be the muzzle speed.
Answer:
A) It takes the truck 8 s to catch the motorcycle.
B) The motorcycle has traveled 160 m in that time.
C) The velocity of the truck is 40 m/s at that time.
Explanation:
The equations of the position and velocity of an object moving in a straight line are as follows:
x = x0 +v0 · t + 1/2 · a · t²
v = v0 + a · t
Where:
x = position
x0 = initial position
v0 = initial velocity
t = time
a = acceleration
v = velocity at time t
(A) When the the truck catches the motorcycle, both have the same position. Notice that the motorcycle moves at constant speed so that a = 0:
x truck = x motorcycle
x0 +v0 · t + 1/2 · a · t² = x0 + v · t
Placing the origin of the frame of reference at the point where the truck starts, both have an initial position of 0. The initial velocity of the truck is 0. Then:
1/2 · a · t² = v · t
solving for t:
t = 2 v/a
t = 2 · 20 m/s/ 5 m/s²
t = 8 s
It takes the truck 8 s to catch the motorcycle.
(B) Using the equation of the position of the motorcycle, we can calculate the traveled distance in 8 s.
x = v · t
x = 20 m/s · 8 s
x = 160 m
(C) Now, we use the velocity equation at time 8 s.
v = v0 + a · t
v = 0 m/s + 5 m/s² · 8 s
v = 40 m/s
Answer:
a) v² = G M R³, b) T = 2π /
, c) 
Explanation:
a) The kinetic energy is
K = ½ m v²
to find the velocity let's use Newton's second law
F = m a
acceleration is centripetal
a = v² / R
force is the universal force of attraction
F = G m M / r²
we substitute
G m M R² = m v² R
v² = G M R³
the kinetic energy is
K = ½ m G M R³
b) angular and linear velocity are related
v = w R
w = v / R
w =
w =
the angular velocity is related to the period
w = 2π / T
T = 2π / w
we substitute
T = 2π /
c) the angular moeomto is
L = m v r
L = m RA G M R³ R
L = 