Answer:
Explanation:
mass of probe m = 474 Kg
initial speed u = 275 m /s
force acting on it F = 5.6 x 10⁻² N
displacement s = 2.42 x 10⁹ m
A )
initial kinetic energy = 1/2 m u² , m is mass of probe.
= .5 x 474 x 275²
= 17923125 J
B )
work done by engine
= force x displacement
= 5.6 x 10⁻² x 2.42 x 10⁹
= 13.55 x 10⁷ J
C ) Final kinetic energy
= Initial K E + work done by force on it
= 17923125 +13.55 x 10⁷
= 1.79 x 10⁷ + 13.55 x 10⁷
= 15.34 x 10⁷ J
D ) If v be its velocity
1/2 m v² = 15.34 x 10⁷
1/2 x 474 x v² = 15.34 x 10⁷
v² = 64.72 x 10⁴
v = 8.04 x 10² m /s
= 804 m /s
C. Textiles
It was the first thing mechanized in the Industrial Revolution
Answer:
The value of resistance when power is 1100 watts =
= 50 ohms
Explanation:
Power
= 2200 Watts
Resistance
= 25 ohms
Power
= 1100 Watts
Resistance
= we have to calculate
Given that the power in an electric circuit varies inversely with the resistance
⇒ P ∝ 
⇒
= 
⇒
= 
⇒
= 50 ohms
This is the value of resistance when power is 1100 watts.
Answer:
\Delta E=1.22\times 10^{-22}J
Explanation:
The energy of electron in any state is given by
here h is planck's constant n is state of electron L is the infinte potential well m is the mass of electron
We know that 
Potential well dimension = 
Mass of electron 
So energy required to electron to jump from ground state to 3rd state



Answer:
In the reaction you would have 15.0 mols of Y and X.
Explanation:
The stoichiometric coefficents for X and Y are 1 and 2 respectively, if you start the reaction with 10.0 moles of Y you would need 5.0 moles of X in order to achieve a complete reaction so you will have 15.0 total moles in the reaction, assuming no mass loss and no nuclear reactions.