Isn't velocity Distance over time? if the degree isn't adding resistance it should be 4000 ÷ 20 which gives you 200mps ("per second") which is the velocity without resistance.
As per Newton's II law we know that

here we know that

so here we will have

so here if we need to increase the acceleration we need to increase the applied force while on increasing the mass or on increasing the friction force the acceleration will decrease.
So here correct answer will be
<em>A) force on the object.</em>
The tension in the supporting cable when the cab originally moves downward is 18422.4 N
What is tension?
Tension is described as the pulling force by the means of a three-dimensional object.
Tension might also be described as the action-reaction pair of forces acting at each end of said elements.
Here,
m =combined mass = 1600 kg
s = Displacement of the elevator = 42 m
g = Acceleration due to gravity = 9.81 m/s²
u = Initial velocity = 12 m/s
v = Final velocity = 0
According to the equation of motion:

0 - 12^2 = 2*a*42
a = - 144 / 84
a = - 1.714 m/s^2
Now let's write the equation of the forces acting on the elevator. Taking upward as positive direction:
T-mg = ma
T = m(g-a)
T = 1600 ( 9.8-(-1.74))
T=18422.4 N
Hence,
The tension in the supporting cable when the cab, originally moving downward is 18422.4 N
Learn more about tension here:
<u>brainly.com/question/13772148</u>
#SPJ4
Answer:
Explanation:
Step one:
given data
initial velocity u= 40m/s
time taken t=3seconds
final velocity v=?
Step two:
applying the first equation of motion
v=u-gt--- (the -ve sign implies that the arrow is against gravity)
assume g=9.81m/s^2
v=40-9.81*3
v=40-29.43
v=10.57m/s
Step three:
how high the target is located
applying
s=ut-1/2gt^2
s=40*3-1/2(9.81)*3^2
s=120-88.29/2
s=120-44.145
s=75.86m