1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Firdavs [7]
3 years ago
14

(50 Points)

Biology
1 answer:
kicyunya [14]3 years ago
4 0

Answer:

gg

Explanation:

Not 50 pts but... recessive usually means it's the tiny letters.

Dominant traits have capital letter GG or Gg, so the dominant trait is going to show as the phenotype.

You might be interested in
How do plants get the energy they need to make sugar?​
Tamiku [17]

Answer:

Plants convert energy from sunlight into sugar in a process called photosynthesis. Photosynthesis uses energy from light to convert water and carbon dioxide molecules into glucose (sugar molecule) and oxygen

Explanation:

8 0
2 years ago
Read 2 more answers
A weak gene that is only seen if there are two of them; i.e. dd
Anton [14]
Recessive gene

Hope that helps:)
5 0
3 years ago
True or False: Photosynthesis and
Reil [10]

Answer: I believe this is FALSE.

Explanation: I say this because, although photosynthesis is required to keep the plants alive which causes respiration. It is not objectively needed in the cycle, and it isn't caused by animals.

I hope this helps :D.

8 0
2 years ago
List and describe three molecular methods use to analyze DNA in the laboratory
Arada [10]












































© 1998, 1999 Gregory Carey Chapter 7: The New Genetics - 1 Chapter 7: The New Genetics—Techniques for DNA Analysis Introduction Before the 1980s, finding the genotype of an individual usually involved various laboratory assays for a gene product—the protein or enzyme. The cases of the ABO and Rhesus blood groups are classic examples of how one infers genotypes from the reaction of gene products with certain chemicals. In the mid 1980s, genetic technology took a great leap forward with the ability to genotype the DNA itself. The geneticist could now examine the DNA directly without going through the laborious process of developing assays to detect individual differences in proteins and enzymes. Direct DNA analysis had the further advantage of being able to identify alleles in sections of DNA that did not code for polypeptide chains. As a result of these new advances, the number of genetic loci that could be detected increased exponentially and soon led to the identification of the genes for disorders that had remained a mystery for the better part of this century. In this chapter, the major molecular techniques are outlined. The purpose is to provide a quick and understandable reference for the social scientist. The content of this chapter is not something that is required to understand genetics, what genes are, or how they relate to human behavior. Indeed, this chapter may be skipped without any great loss of continuity. Hence, only the essentials are given and the reader interested in the laboratory science behind the techniques is referred to contemporary textbooks on molecular genetics. We begin by defining a series of basic tools and techniques. © 1998, 1999 Gregory Carey Chapter 7: The New Genetics - 2 Basic Tools and Techniques: Basic tools: Electrophoresis Electrophoresis is a technique that separates small biological molecules by their molecular weight. It may be applied to molecules as large as proteins and enzymes as well as to small snippets of DNA and RNA. One begins the procedure by constructing a “gel”—a highly viscous material the actual chemistry of which need not concern us. Purified copies of the biological specimen are then injected into a “starting lane” at one end of the gel. Finally, a weak electric current is passed through the gel for a specified amount of time. Gravity and the electric current cause the biological molecules to migrate to the opposite end of the gel. The extent to which any molecule moves depends upon its electrical charge, molecular weight, the viscosity of the gel, the strength of the current, and the amA. The simplest method to denature DNA is to h33///////////////////////(http://psych.colorado.edu/~carey/hgss/hgsschapters/HGSS_Chapter07.pdf) # cited 
7 0
2 years ago
The formation of the major Hawaiian Islands began approximately 28 million years ago. These islands have formed as the Pacific I
pashok25 [27]

Answer:

Hawai'i, that honeymoon destination known for stunning sunsets, has a dark secret—it’s a geologically violent place. That’s because the Hawaiian Islands were born from volcanic activity. In fact, that volcanism can still be observed today in Hawai'i.

The six largest Hawaiian Islands—the Big Island, Maui, Lanai, Molokai, Oahu, and Kauai—form a chain of islands running to the northwest. The islands appear in this pattern for a specific reason: They were formed one after the other as a tectonic plate, the Pacific Plate, slid over a plume of magma—molten rock—puncturing Earth’s crust. These magma plumes aren’t small—they can extend hundreds of kilometers below Earth’s surface.

This upwelling of molten rock, known as a “hot spot,” creates volcanoes that spew out lava (magma that reaches Earth’s surface). The lava then cools and hardens to create new land. The Hawaiian Islands were literally created from lots of volcanoes—they’re a trail of volcanic eruptions.

Hot-spot volcanism can occur in the middle of tectonic plates. That’s unlike traditional volcanism, which takes place at plate boundaries. One explanation that scientists have proposed for hot-spot volcanism is that it occurs near unusually hot parts of Earth’s mantle, the layer of the planet below the crust.

In the case of the Hawaiian Islands, the Pacific Plate is continually moving to the northwest over the Hawaiian hot spot. This movement caused the Hawaiian chain of islands to form. The Pacific Plate is just one of the Earth’s roughly 20 tectonic plates, which are constantly in motion and are responsible for events like earthquakes.

There are many landforms around the Hawaiian Islands that formed from the same volcanic hot spot. Scientists believe this hot spot has been expelling lava for roughly 70 million years.

Many of these landforms created by volcanoes are still submerged. Also submerged are the peaks of the Emperor Seamount to the northwest of Hawai'i, which is part of the same chain of volcanic formations. A seamount is a submarine mountain. The Emperor Seamount extends for more than 6,000 kilometers (3,728 miles) from Hawai'i up to the Aleutian Trench in Alaska. In total, more than 750,000 cubic kilometers (180,000 cubic miles) of lava erupted to form all of the landforms in the Hawaiian–Emperor chain. That’s enough to cover the entire state of California in a layer of lava more than one kilometer (0.62 mile) thick.

Volcanic activity is still occurring on the southern shore of the Big Island, the youngest of the Hawaiian Islands. In 2018, the Kilauea volcano erupted spectacularly and inundated over 30 square kilometers (30.5 square miles) of the Big Island with lava. The layer of lava was up to 24 meters (79 feet) thick in places—taller than a six-story building. Thousands of earthquakes accompanied the eruptions, and nearby residents and staff at the United States Geological Survey’s Hawaiian Volcano Observatory near Kilauea were forced to evacuate.

Kilauea isn’t the only volcano on the Big Island. There are also Kohala, Mauna Kea, Hualalai, and Mauna Loa. Of these four volcanoes, only Hualalai and Mauna Loa are active. Mauna Kea, a dormant volcano on the Big Island, is in fact the tallest mountain in the world measured from its base to its top. It’s over 10,000 meters (32,800 feet) tall, significantly taller than Mt. Everest. But nearly 6,000 meters (19,700 feet) of its height is below the sea, so we only see about 4,000 meters (13,000 feet) of it.

The oldest of the major Hawaiian Islands, Kauai, doesn’t have any active volcanoes because it’s no longer over the Hawaiian hot spot. Instead, the dominant ecological process occurring there is erosion, which has sculpted Kauai’s landscape into beautiful cliffs.

As the Pacific Plate continues to move at a rate of roughly seven centimeters (2.75 inches) per year—about the rate at which fingernails grow—new volcanic material is building up over the Hawaiian hot spot. This material will eventually form another Hawaiian island. Located about 35 kilometers (22 miles) off the southern coast of the Big Island, this future island already has a name: Loihi. But don’t book a trip there just yet—Loihi is not visible as an island right now. It’s grown by thousands of meters already, but it is still roughly 1,000 meters (3,280 feet) below the surface of the Pacific Ocean. As lava continues to be deposited on Loihi, scientists predict that it will rise above sea level sometime between 10,000 and 100,000 years from now.

Scientists think that seamounts like Loihi may resemble worlds in the outer solar system like Saturn’s moon Enceladus. By studying the conditions in the deep sea around Loihi, researchers can better understand what other worlds in the solar system may look like.

Explanation:

sana po maka help

4 0
2 years ago
Read 2 more answers
Other questions:
  • Yeast, which is used to help dough rise, and truffles, which are a delicacy to eat, are sac fungi or _____.
    10·2 answers
  • ANSWER PLEASEEEEE TYYY
    15·1 answer
  • Why are animals important to an ecosystem?
    14·1 answer
  • Which of the following is an example of asexual reproduction?
    13·2 answers
  • The fish will not survive if light is unavailable to this ecosystem. explain why
    15·1 answer
  • What is the optimal ph that this enzyme functions at ?
    15·1 answer
  • 45. Where in the
    10·1 answer
  • Horses went extinct in North America and did not return until they were ferried in boats by European settlers (no land mammal ca
    6·1 answer
  • A person would never have pure water put into their veins in a hospital because their cells would what?
    7·1 answer
  • Dna replication<br><br> aaccagaccca<br> ttggtctgggt
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!