If the roots of the equation f(x)=0 are -4,-1, 2 and 5, then binomials (x+4), (x+1), (x-2) and (x-5) are factors of needed polynomial.
Thus, the polynomial will have form
where a is real coefficient (positive or negative). This polynomial has degree 4 as needed.
The form of the graph depends on the sign of coefficient a. Attached diagrams show two different cases of possible forms of graphs (first one for positive coefficient a, second one for negative coefficient a).
Answer:
options 1,3,4 are functions.
Step-by-step explanation:
RULE: a relation is said to be a function if every element in the domain ( the numbers in the left side in the below sets) is related to only one number ( number on the right side in the below sets).
Let us check each option one by one:
1. 3 2
9 1
-4 7
0 -2
here each number on the left side is mapped to or is related to one number only.
so this relation is a function
2. 7 1
-5 2,3
1 0
here, "-5" is mapped to two different numbers. so this relation is not a function.
3. -2 -4
2 4
6 8
-6 -8
here each number on the left side is mapped to or is related to one number only.
so this relation is a function
4. 1 3
-1 3
2 3
-2 3
here each number on the left side is mapped to or is related to one number only.
so this relation is a function.
even if it is related to the same number, it doesn't matter.
it should follow the above given rule that's it.
Answer:
can't understand the question.
Answer:
x=10 n=18.5 s=6
Step-by-step explanation:
4x-10=30
Add 10 to both sides
4x-10+10=30+10
4x=40
Divide by 4 on both sides
(4x)/4=40/4
x=10
2n-7=30
Add 7 to both sides
2n-7+7=30+7
2n=37
Divide by 2 on both sides
(2n)/2=37/2
n=18.5
(s/3)+2=4
Subtract 2 from both sides
(s/3)+2-2=4-2
(s/3)=2
Multiply by 3 on both sides
3s/3=2*3
s=6