Answer:
The collision of oceanic plates and any other plates in which the oceanic plate slides beneath the other plate creates the biggest earth quakes. Most of these earth quakes occur beneath the sea or oceans and can cause volcanic eruptions as well. Tsunami is another oceanic event that occurs due to earth quakes occurring due to shifting of plates beneath the sea.
+
⇔
Decreasing the temperature of the reaction,the reaction shifts forward.
The explanation is given below.
Explanation:
If the temperature of the reaction mixture is increased,then the equilibrium will shift to decrease the temperature.
If the temperature of the reaction mixture is decreased,then the equilibrium will shift to increase the temperature.
During the formation of the ammonia,it gives off heat.So it is an exothermic reaction.
+
⇔
A decrease in the temperature favors the reaction that is exothermic (the forward reaction)because it produces energy.Therefore,if the temperature is decreased,the yield of the ammonia increases.
<em>Therefore if the temperature is increased,the reaction shifts forward and the yield of the ammonia increases and it is an exothermic reaction.</em>
Answer:
<h3>The answer is 7.42 </h3>
Explanation:
The pH of a solution can be found by using the formula
![pH = - log [ { H_3O}^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5B%20%7B%20H_3O%7D%5E%7B%2B%7D%5D)
From the question we have

We have the final answer as
<h3>7.42 </h3>
Hope this helps you
Answer:
pH = 12.15
Explanation:
To determine the pH of the HCl and KOH mixture, we need to know that the reaction is a neutralization type.
HCl + KOH → H₂O + KCl
We need to determine the moles of each compound
M = mmol / V (mL) → 30 mL . 0.10 M = 3 mmoles of HCl
M = mmol / V (mL) → 40 mL . 0.10 M = 4 mmoles of KOH
The base is in excess, so the HCl will completely react and we would produce the same mmoles of KCl
HCl + KOH → H₂O + KCl
3 m 4 m -
1 m 3 m
As the KCl is a neutral salt, it does not have any effect on the pH, so the pH will be affected, by the strong base.
1 mmol of KOH has 1 mmol of OH⁻, so the [OH⁻] will be 1 mmol / Tot volume
[OH⁻] 1 mmol / 70 mL = 0.014285 M
- log [OH⁻] = 1.85 → pH = 14 - pOH → 14 - 1.85 = 12.15