It has the most mass. but the electron cloud takes up the most space.
Answer:
.0556 L
Explanation:
First, convert the 1.35 M to 1.35 mol/L in order for the units to correctly cancel out.
Then, multiply (0.0725 moles Na2CO3/1) times (L/ 1.35 mol).
Finally, the answer will be .0556 L.
<h3 />
Explanation:
When there occurs sharing of electrons between two chemically combining atoms then it forms a covalent bond. Generally, a covalent bond is formed between two non-metals.
An ionic bond is defined as the bond formed due to transfer of one or more number of electrons from one atom to another. An ionic bond is always formed between a metal and a non-metal.
Every atom of an element will have orbitals in which electrons are found. These orbitals are known as energy level.
A molecule is defined as the smallest particle present in a substance or atom.
A metallic bond is formed due to mobile valence electrons shared by positive nuclei in a metallic crystal.
Thus, we can conclude that given statements are correctly matched as follows.
1). a chemical bond formed by the electrostatic attraction between ions - ionic bond
2). a chemical bond formed by two electrons that are shared between two atoms - covalent bond
3). the orbitals of an atom where electrons are found - energy level
4). the smallest particle of a covalently bonded substance - molecule
5). a bond characteristic of metals in which mobile valence electrons are shared among positive nuclei in the metallic crystal - metallic bond
Answer:
i could help you can you explain more plzzzzzz i really need points
Explanation:
Answer:
ΔH°rxn = - 433.1 KJ/mol
Explanation:
- CH4(g) + 4Cl2(g) → CCl4(g) + 4HCl(g)
⇒ ΔH°rxn = 4ΔH°HCl(g) + ΔH°CCl4(g) - 4ΔH°Cl2(g) - ΔH°CH4(g)
∴ ΔH°Cl2(g) = 0 KJ/mol.....pure element in its reference state
∴ ΔH°CCl4(g) = - 138.7 KJ/mol
∴ ΔH°HCl(g) = - 92.3 KJ/mol
∴ ΔH°CH4(g) = - 74.8 KJ/mol
⇒ ΔH°rxn = 4(- 92.3 KJ/mol) + (- 138.7 KJ/mol) - 4(0 KJ/mol) - (- 74.8 KJ/mol)
⇒ ΔH°rxn = - 369.2 KJ/mol - 138.7 KJ/mol - 0 KJ/mol + 74.8 KJ/mol
⇒ ΔH°rxn = - 433.1 KJ/mol