Excise duty thus this type of tax is paid on goods sold
Answer:
Largest prime factor of the given expression is <em>379.</em>
Step-by-step explanation:
Given the expression:
![15^6 - 7^6](https://tex.z-dn.net/?f=15%5E6%20-%207%5E6)
To find:
The largest prime factor of the given expression.
Solution:
First of all, let us factorize the given expression.
![15^6 - 7^6\\\Rightarrow (15^3)^2 - (7^3)^2\\\\\text{Using } x^{2} -y^2 = (x+y) (x-y)\\\\\Rightarrow (15^3+7^3)(15^3-7^3)](https://tex.z-dn.net/?f=15%5E6%20-%207%5E6%5C%5C%5CRightarrow%20%2815%5E3%29%5E2%20-%20%287%5E3%29%5E2%5C%5C%5C%5C%5Ctext%7BUsing%20%7D%20x%5E%7B2%7D%20-y%5E2%20%3D%20%28x%2By%29%20%28x-y%29%5C%5C%5C%5C%5CRightarrow%20%2815%5E3%2B7%5E3%29%2815%5E3-7%5E3%29)
Let us learn two formula:
![x^3+y^3 = (x+y)(x^2+y^2-xy)](https://tex.z-dn.net/?f=x%5E3%2By%5E3%20%3D%20%28x%2By%29%28x%5E2%2By%5E2-xy%29)
![x^3-y^3 = (x-y)(x^2+y^2+xy)](https://tex.z-dn.net/?f=x%5E3-y%5E3%20%3D%20%28x-y%29%28x%5E2%2By%5E2%2Bxy%29)
Applying the above formula in the expression written above:
...... (1)
Similarly:
........ (2)
Multiplying the expressions from (1) and (2) to get the result:
![\therefore 15^6 - 7^6 = 2^4 \times 11 \times \underline{\bold{379}} \times 13 ^2](https://tex.z-dn.net/?f=%5Ctherefore%2015%5E6%20-%207%5E6%20%3D%202%5E4%20%5Ctimes%2011%20%5Ctimes%20%5Cunderline%7B%5Cbold%7B379%7D%7D%20%5Ctimes%2013%20%5E2)
So, largest prime factor of the given expression is <em>379.</em>
0.45 is bigger than 2/5. Hope this helps.
135 and 225
Explanation: This one is very hard for me to explain sorry
Mark brainliest please
Answer: 180
Step-by-step explanation: