Answer:
u = -5/9
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Order of Operations: BPEMDAS
- Equality Properties
Step-by-step explanation:
<u>Step 1: Define equation</u>
-3(u + 2) = 5u - 1 + 5(2u + 1)
<u>Step 2: Solve for </u><em><u>u</u></em>
- Distribute: -3u - 6 = 5u - 1 + 10u + 5
- Combine like terms: -3u - 6 = 15u + 4
- Add 3u to both sides: -6 = 18u + 4
- Subtract 4 on both sides: -10 = 18u
- Divide 18 on both sides: -10/18 = u
- Simplify: -5/9 = u
- Rewrite: u = -5/9
<u>Step 3: Check</u>
<em>Plug in u into the original equation to verify it's a solution.</em>
- Substitute in <em>u</em>: -3(-5/9 + 2) = 5(-5/9) - 1 + 5(2(-5/9) + 1)
- Multiply: -3(-5/9 + 2) = -25/9 - 1 + 5(-10/9 + 1)
- Add: -3(13/9) = -25/9 - 1 + 5(-1/9)
- Multiply: -13/3 = -25/9 - 1 - 5/9
- Subtract: -13/3 = -34/9 - 5/9
- Subtract: -13/3 = -13/3
Here we see that -13/3 does indeed equal -13/3.
∴ u = -5/9 is a solution of the equation.
Answer:
d = 14
Step-by-step explanation:

I think you just add all the sides even the ones you don't see. The left side of the shape is 6m as well as the right. and the same with the 4s. The answer is 36.
Answer:
C. It cannot be factored into a perfect square.
Step-by-step explanation:
Take the square roots of all the numbers present (64, 49, 8) and you will find that 8, the constant, is not a perfect square.
Answer:
where
denote arc lengths of two circles
Step-by-step explanation:
Let
denote arc lengths of two circles,
denote corresponding radii and
denote the corresponding central angles.
So,
and 
This implies
and 
As each circle has an arc where the measures of the corresponding central angles are the same, 

As radius of one circle is twice the radius of the other circle,

