Weathering is the process of breaking large rocks and boulders into much smaller ones. Weathering can be brought about by wind and water mostly. Sometimes even biological forces account for some types of weathering.
Well knowing that a representative particle is the smallest unit that would mean an iron atom would be the answer
Answer:
We need 375 milliliters of 0.100 M NaHCO3 solution
Explanation:
Step 1: Data given
Initial molarity NaHCO3 = 0.100 M
Volume prepared solution = 750.0 mL
Molarity prepared solution = 0.05 M
Step 2: Calculate initial volume
C1*V1 = C2V2
⇒with C1 = the initial concentration = 0.100 M
⇒with V1 = The initial volume = TO BE DETERMINED
⇒with C2 = the new concentration = 0.0500M
⇒with v2 = the new volume = 750.0 mL = 0.750 L
0.100 M * V1 = 0.0500 M * 0.750 L
V1 = (0.0500M * 0.750L)/0.100 M
V1 = 0.375 L = 375 mL
We need 375 milliliters of 0.100 M NaHCO3 solution
D is the answer. You're welcome...
According to the kinetic theory, the mean free path is the average distance a single atom or molecule of an element or compound travels with respect with the other atoms during a collision. The greater the mean free path, the more ideal the behavior of a gas molecule is because intermolecular forces are minimum. To understand which factors affect the mean free path, the equation is written below.
l = μ/P * √(πkT/2m), where
l is the mean free path
μ is the viscosity of the fluid
P is the pressure
k is the Boltzmann's constant
T is the absolute temperature
m is the molar mass
So, here are the general effects of the factors on the mean free path:
Mean free path increases when:
1. The fluid is viscous (↑μ)
2. At low pressures (↓P)
3. At high temperatures (↑T)
4. Very light masses (↓m)
The opposite is also true for when the mean free path decreases. Factors that are not found here have little or no effect.