Explanation:
Molar mass of
= 39.1 + 35.5 + 3(16.0) = 122.6 g
Molar mass of KCl = 39.1 + 35.5 = 74.6 g
Molar mass of
= 32.0 g
According to the equation, 2 moles of
reacts to give 3 moles of oxygen.
Therefore, 2 (122.6) = 245.2 g of
will give 3 (32.0) = 96.0 g of oxygen. Thus, 245.2 g of
gives 96.0 g of oxygen.
(a) Calculate the amount of oxygen given by 2.72 g of
as follows.
of
(b) Calculate the amount of oxygen given by 0.361 g of
as follows.
of
c) Calculate the amount of oxygen given by 83.6 kg
as follows.
of 
Convert kg into grams as follows.
= 32731 g of 
(d) Calculate the amount of oxygen given by 22.5 mg of
as follows.

Convert mg into grams as follows.
of 
Given is the specific heat of water equal to 4.18 Joule per gram per *C.
This means to raise the temperature of 1 g of water by 1 degree Celsius we need 4.18 joule of energy.
Now, look at the question. We are asked that how much amount of energy would be required to raise the temperature of 25 g of water by (54-50) = 4 degree celsius.
To do so we have formula
Q = m C (temperature difference)
Have a look at pic for answer
Answer: The molality of solution is 17.6 mole/kg
Explanation:
Molality of a solution is defined as the number of moles of solute dissolved per kg of the solvent.
where,
n = moles of solute
= weight of solvent in kg
moles of acetone (solute) = 0.241
moles of water (solvent )= (1-0.241) = 0.759
mass of water (solvent )=
Now put all the given values in the formula of molality, we get
Therefore, the molality of solution is 17.6 mole/kg
Soil temperature and <span>water content</span>