(a) If the particle's position (measured with some unit) at time <em>t</em> is given by <em>s(t)</em>, where
![s(t) = \dfrac{5t}{t^2+11}\,\mathrm{units}](https://tex.z-dn.net/?f=s%28t%29%20%3D%20%5Cdfrac%7B5t%7D%7Bt%5E2%2B11%7D%5C%2C%5Cmathrm%7Bunits%7D)
then the velocity at time <em>t</em>, <em>v(t)</em>, is given by the derivative of <em>s(t)</em>,
![v(t) = \dfrac{\mathrm ds}{\mathrm dt} = \dfrac{5(t^2+11)-5t(2t)}{(t^2+11)^2} = \boxed{\dfrac{-5t^2+55}{(t^2+11)^2}\,\dfrac{\rm units}{\rm s}}](https://tex.z-dn.net/?f=v%28t%29%20%3D%20%5Cdfrac%7B%5Cmathrm%20ds%7D%7B%5Cmathrm%20dt%7D%20%3D%20%5Cdfrac%7B5%28t%5E2%2B11%29-5t%282t%29%7D%7B%28t%5E2%2B11%29%5E2%7D%20%3D%20%5Cboxed%7B%5Cdfrac%7B-5t%5E2%2B55%7D%7B%28t%5E2%2B11%29%5E2%7D%5C%2C%5Cdfrac%7B%5Crm%20units%7D%7B%5Crm%20s%7D%7D)
(b) The velocity after 3 seconds is
![v(3) = \dfrac{-5\cdot3^2+55}{(3^2+11)^2} = \dfrac{1}{40}\dfrac{\rm units}{\rm s} = \boxed{0.025\dfrac{\rm units}{\rm s}}](https://tex.z-dn.net/?f=v%283%29%20%3D%20%5Cdfrac%7B-5%5Ccdot3%5E2%2B55%7D%7B%283%5E2%2B11%29%5E2%7D%20%3D%20%5Cdfrac%7B1%7D%7B40%7D%5Cdfrac%7B%5Crm%20units%7D%7B%5Crm%20s%7D%20%3D%20%5Cboxed%7B0.025%5Cdfrac%7B%5Crm%20units%7D%7B%5Crm%20s%7D%7D)
(c) The particle is at rest when its velocity is zero:
![\dfrac{-5t^2+55}{(t^2+11)^2} = 0 \implies -5t^2+55 = 0 \implies t^2 = 11 \implies t=\pm\sqrt{11}\,\mathrm s \imples t \approx \boxed{3.317\,\mathrm s}](https://tex.z-dn.net/?f=%5Cdfrac%7B-5t%5E2%2B55%7D%7B%28t%5E2%2B11%29%5E2%7D%20%3D%200%20%5Cimplies%20-5t%5E2%2B55%20%3D%200%20%5Cimplies%20t%5E2%20%3D%2011%20%5Cimplies%20t%3D%5Cpm%5Csqrt%7B11%7D%5C%2C%5Cmathrm%20s%20%5Cimples%20t%20%5Capprox%20%5Cboxed%7B3.317%5C%2C%5Cmathrm%20s%7D)
(d) The particle is moving in the positive direction when its position is increasing, or equivalently when its velocity is positive:
![\dfrac{-5t^2+55}{(t^2+11)^2} > 0 \implies -5t^2+55>0 \implies -5t^2>-55 \implies t^2 < 11 \implies |t|](https://tex.z-dn.net/?f=%5Cdfrac%7B-5t%5E2%2B55%7D%7B%28t%5E2%2B11%29%5E2%7D%20%3E%200%20%5Cimplies%20-5t%5E2%2B55%3E0%20%5Cimplies%20-5t%5E2%3E-55%20%5Cimplies%20t%5E2%20%3C%2011%20%5Cimplies%20%7Ct%7C%3C%5Csqrt%7B11%7D%20%5Cimplies%200%3Ct%3C%5Csqrt%7B11%7D)
In interval notation, this happens for <em>t</em> in the interval (0, √11) or approximately (0, 3.317) s.
(e) The total distance traveled is given by the definite integral,
![\displaystyle \int_0^8 |v(t)|\,\mathrm dt](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E8%20%7Cv%28t%29%7C%5C%2C%5Cmathrm%20dt)
By definition of absolute value, we have
![|v(t)| = \begin{cases}v(t) & \text{if }v(t)\ge0 \\ -v(t) & \text{if }v(t)](https://tex.z-dn.net/?f=%7Cv%28t%29%7C%20%3D%20%5Cbegin%7Bcases%7Dv%28t%29%20%26%20%5Ctext%7Bif%20%7Dv%28t%29%5Cge0%20%5C%5C%20-v%28t%29%20%26%20%5Ctext%7Bif%20%7Dv%28t%29%3C0%5Cend%7Bcases%7D)
In part (d), we've shown that <em>v(t)</em> > 0 when -√11 < <em>t</em> < √11, so we split up the integral at <em>t</em> = √11 as
![\displaystyle \int_0^8 |v(t)|\,\mathrm dt = \int_0^{\sqrt{11}}v(t)\,\mathrm dt - \int_{\sqrt{11}}^8 v(t)\,\mathrm dt](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E8%20%7Cv%28t%29%7C%5C%2C%5Cmathrm%20dt%20%3D%20%5Cint_0%5E%7B%5Csqrt%7B11%7D%7Dv%28t%29%5C%2C%5Cmathrm%20dt%20-%20%5Cint_%7B%5Csqrt%7B11%7D%7D%5E8%20v%28t%29%5C%2C%5Cmathrm%20dt)
and by the fundamental theorem of calculus, since we know <em>v(t)</em> is the derivative of <em>s(t)</em>, this reduces to
![s(\sqrt{11})-s(0) - s(8) + s(\sqrt{11)) = 2s(\sqrt{11})-s(0)-s(8) = \dfrac5{\sqrt{11}}-0 - \dfrac8{15} \approx 0.974\,\mathrm{units}](https://tex.z-dn.net/?f=s%28%5Csqrt%7B11%7D%29-s%280%29%20-%20s%288%29%20%2B%20s%28%5Csqrt%7B11%29%29%20%3D%202s%28%5Csqrt%7B11%7D%29-s%280%29-s%288%29%20%3D%20%5Cdfrac5%7B%5Csqrt%7B11%7D%7D-0%20-%20%5Cdfrac8%7B15%7D%20%5Capprox%200.974%5C%2C%5Cmathrm%7Bunits%7D)
Its 5 yd i think. i hope it helped
Answer:
a. ![9a^3 - 9ab^2](https://tex.z-dn.net/?f=%209a%5E3%20-%209ab%5E2%20)
b. ![9a(a^2 - b^2)](https://tex.z-dn.net/?f=%209a%28a%5E2%20-%20b%5E2%29%20)
Step-by-step explanation:
a.
![Volume = l*w*h](https://tex.z-dn.net/?f=%20Volume%20%3D%20l%2Aw%2Ah%20)
![Volume_{smaller} = l*w*h](https://tex.z-dn.net/?f=%20Volume_%7Bsmaller%7D%20%3D%20l%2Aw%2Ah%20)
Where, ![l = 9a, w = b, h = b](https://tex.z-dn.net/?f=%20l%20%3D%209a%2C%20w%20%3D%20b%2C%20h%20%3D%20b%20)
![Volume_{smaller} = 9a*b*b = 9ab^2](https://tex.z-dn.net/?f=%20Volume_%7Bsmaller%7D%20%3D%209a%2Ab%2Ab%20%3D%209ab%5E2%20)
![Volume_{larger} = l*w*h](https://tex.z-dn.net/?f=%20Volume_%7Blarger%7D%20%3D%20l%2Aw%2Ah%20)
Where, ![l = 9a, w = a, h = a](https://tex.z-dn.net/?f=%20l%20%3D%209a%2C%20w%20%3D%20a%2C%20h%20%3D%20a%20)
![Volume_{smaller} = 9a*a*a = 9a^3](https://tex.z-dn.net/?f=%20Volume_%7Bsmaller%7D%20%3D%209a%2Aa%2Aa%20%3D%209a%5E3%20)
Volume of the shaded figure = ![9a^3 - 9ab^2](https://tex.z-dn.net/?f=%209a%5E3%20-%209ab%5E2%20)
b.
expressed in factored form:
Look for the term that is common to 9a³ and 9ab², then take outside the parenthesis.
![9a^3 - 9ab^2 = 9a(a^2 - b^2)](https://tex.z-dn.net/?f=%209a%5E3%20-%209ab%5E2%20%3D%209a%28a%5E2%20-%20b%5E2%29%20)
I need points for a test please don’t report