1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastasy [175]
3 years ago
6

Geometry work HELP ASAP trying to find the measure of a circumference!!

Mathematics
1 answer:
dusya [7]3 years ago
7 0

Answer:

65 degrees

Step-by-step explanation:

Since it is given that AB=DC

then we know that AO=DO and BO=CO because it is the radius of a same circle.

Hence the shapes are equal and thus DOC=65 degree as it serves as a corresponding angle to AOB

You might be interested in
What is 3.56 x 10^-5 in standard form?
Olin [163]
0.00356 is the standard form
4 0
3 years ago
The graphs of the quadratic functions f(x) = 6 – 10x2 and g(x) = 8 – (x – 2)2 are provided below. Observe there are TWO lines si
natta225 [31]

Answer:

a) y = 7.74*x + 7.5

b)  y = 1.148*x + 6.036

Step-by-step explanation:

Given:

                                  f(x) = 6 - 10*x^2

                                  g(x) = 8 - (x-2)^2

Find:

(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation

(b) The other line simultaneously tangent to both graphs has equation,

Solution:

- Find the derivatives of the two functions given:

                                f'(x) = -20*x

                                g'(x) = -2*(x-2)

- Since, the derivative of both function depends on the x coordinate. We will choose a point x_o which is common for both the functions f(x) and g(x). Point: ( x_o , g(x_o)) Hence,

                                g'(x_o) = -2*(x_o -2)

- Now compute the gradient of a line tangent to both graphs at point (x_o , g(x_o) ) on g(x) graph and point ( x , f(x) ) on function f(x):

                                m = (g(x_o) - f(x)) / (x_o - x)

                                m = (8 - (x_o-2)^2 - 6 + 10*x^2) / (x_o - x)

                                m = (8 - (x_o^2 - 4*x_o + 4) - 6 + 10*x^2)/(x_o - x)

                                m = ( 8 - x_o^2 + 4*x_o -4 -6 +10*x^2) /(x_o - x)

                                m = ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x)

- Now the gradient of the line computed from a point on each graph m must be equal to the derivatives computed earlier for each function:

                                m = f'(x) = g'(x_o)

- We will develop the first expression:

                                m = f'(x)

                                ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

Eq 1.                          (-2 - x_o^2 + 4*x_o + 10*x^2) = -20*x*x_o + 20*x^2

And,

                              m = g'(x_o)

                              ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

                              -2 - x_o^2 + 4*x_o + 10*x^2 = -2(x_o - 2)(x_o - x)

Eq 2                       -2 - x_o^2 + 4*x_o+ 10*x^2 = -2(x_o^2 - x_o*(x + 2) + 2*x)

- Now subtract the two equations (Eq 1 - Eq 2):

                              -20*x*x_o + 20*x^2 + 2*x_o^2 - 2*x_o*(x + 2) + 4*x = 0

                              -22*x*x_o + 20*x^2 + 2*x_o^2 - 4*x_o + 4*x = 0

- Form factors:       20*x^2 - 20*x*x_o - 2*x*x_o + 2*x_o^2 - 4*x_o + 4*x = 0

                              20*x*(x - x_o) - 2*x_o*(x - x_o) + 4*(x - x_o) = 0

                               (x - x_o)(20*x - 2*x_o + 4) = 0  

                               x = x_o   ,     x_o = 10x + 2    

- For x_o = 10x + 2  ,

                               (g(10*x + 2) - f(x))/(10*x + 2 - x) = -20*x

                                (8 - 100*x^2 - 6 + 10*x^2)/(9*x + 2) = -20*x

                                (-90*x^2 + 2) = -180*x^2 - 40*x

                                90*x^2 + 40*x + 2 = 0  

- Solve the quadratic equation above:

                                 x = -0.0574, -0.387      

- Largest slope is at x = -0.387 where equation of line is:

                                  y - 4.502 = -20*(-0.387)*(x + 0.387)

                                  y = 7.74*x + 7.5          

- Other tangent line:

                                  y - 5.97 = 1.148*(x + 0.0574)

                                  y = 1.148*x + 6.036

6 0
3 years ago
The perimeter of the square at the right is 48 in what is the area of the square at the right explain how you found your answer
irina1246 [14]

ok so 48÷4 is each side since square sides are equal that is 12 ×12 which is a area of 144

5 0
3 years ago
Whats the answer to <br> y=3x+9
MakcuM [25]

Answer:

x=-3

Step-by-step explanation:

so you tryna get x by itself, so you are gonna do the opposite. so move nine over by subtracting it.

-9=3x

now you have to divide -9 by 3 to move it over

-2=x

7 0
3 years ago
Cheryl went on a 3-hour train ride. The train traveled at an average speed of 75 miles per hour. What was the total distance in
SOVA2 [1]
3 hours x 75 mph = 225 miles
3 0
3 years ago
Other questions:
  • What do you call it when a bunch of kids throw circles at eachother
    6·2 answers
  • I will give you a Brainly crown if it is right. Will you help me plzzzzzz helplpppppp
    13·2 answers
  • You design and give a survey to your homeroom class. The survey includes the question, “To the nearest half hour, how many minut
    14·1 answer
  • An arithmetic progression is a sequence of numbers in which the distance (or difference) between any two successive numbers if t
    5·1 answer
  • A classic rock radio station claims to play an average of 50 minutes of music every hour. However, it seems that every time you
    8·1 answer
  • What is the point on the line perpendicular to the given line, passing through the given point that is also on the y-axis?
    5·2 answers
  • What is the constant of proportionality y=4.75x
    7·1 answer
  • Candice has six pairs of jeans she places each pair on its own hanger how many hangers does Candace use
    9·2 answers
  • . (y + 5)(y – 7) = 0
    15·1 answer
  • Sinead buys a watch
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!