1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serhud [2]
3 years ago
11

How do you solve a constant rate problem?

Mathematics
1 answer:
Solnce55 [7]3 years ago
4 0
There is a video on YouTube for site agreement I can not past the link sorry look there.
You might be interested in
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Are the two figures congruent?
geniusboy [140]

Answer:

No, because the reflection of ABC is not congruent to A’B’C’.

Step-by-step explanation:

we know that

The rule of the reflection across the line y=x is equal to

(x,y) -------> (y,x)

so

A(-6,6) -------> A'(6,-6) ----> is ok

B(-3,3) ------> B'(3,-3) ----> is ok

C(-8,2) ------> C'(8,-2) ----> is not ok ( is not a reflection acros the line y=x)

therefore

The triangles are no t congruent, because the reflection of ABC is not congruent to A’B’C’

6 0
3 years ago
Michael has 2 meters of yarn. she needs to cut the yarn into 10 equal pieces. how long will each price of yarn be? A.) 20 cm B.)
Karolina [17]
2 meters is equal to 200 centimeters
Divide 200 by 10
200/10 = 20cm

Each piece will be 20 cm long
So your answer is A
3 0
3 years ago
Anyone mind taking the time to help me? Ty?
alekssr [168]

Answer:

Both Lindsay and Sharon are wrong.

Step-by-step explanation:

When Lindsay was doing her problem, she put 100 on the bottom and 45 on the top, when it should have been the other way around.

Sharon would have been correct if she had used the right measuring unit. 2/5 of a milliliter should have been 2/5 of a liter.

6 0
3 years ago
Read 2 more answers
How can we predict the sign of the product or quotient of sign numbers?
Andru [333]
Two positives make a positive
two negatives make a positive
1 negative and 1 positive make negative
1 positive and 1 negative make a negative
6 0
3 years ago
Other questions:
  • What is 7c =42 <br><br> A). factor <br><br> B). product <br><br> C). sum<br><br> D). difference
    11·1 answer
  • How long should they make the front paw?
    11·1 answer
  • Find the product of (3.7 •10^4) and 2.
    7·2 answers
  • Juan goes to the bowling alley every three weeks Percy goes to the bowling alley every five weeks if Juan and Percy meet the fir
    11·2 answers
  • Is quadrilateral jklm the result of a dilation of quadrilateral abcd by a scale factor of 2? why or why not?
    9·1 answer
  • What are the slope and the y-intercept of the linear function that is represented by the graph?
    8·1 answer
  • Solve this question <br> 48+m=72
    15·1 answer
  • I need help pls! <br> this test is about angles, and i am having trouble with it.
    5·1 answer
  • The formula for the circumference of a circle is C = 2xr. If the circumference is
    13·1 answer
  • Brainliest reward need brief working out
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!