Answer:
=1419.19 meters.
Explanation:
The time it takes for the shell to drop to the tanker from the height, H =1/2gt²
610m=1/2×9.8×t²
t²=(610m×2)/9.8m/s²
t²=124.49s²
t=11.16 s
Therefore, it takes 11.16 seconds for a free fall from a height of 610m
Range= Initial velocity×time taken to hit the tanker.
R=v₁t
Lets change 300 mph to kph.
=300×1.60934 =482.802 kph
Relative velocity=482.802 kph-25 kph
=457.802 kph
Lets change 11.16 seconds to hours.
=11.16/(3600)
=0.0031 hours.
R=v₁t
=457.802 kph × 0.0031 hours.
=1.41918 km
=1.41919 km × 1000m/km
=1419.19 meters.
If a ray of light hits the surface of a sheet of glass, some light will be reflected by the surface of the glass. However, much of the light will pass through the glass, because glass is transparent. ... This 'bending of a ray of light' when it passes from one substance into another substance is called refraction.
Answer:
50,000 V/m
Explanation:
The electric field between two charged metal plates is uniform.
The relationship between potential difference and electric field strength for a uniform field is given by the equation

where
is the potential difference
E is the magnitude of the electric field
d is the distance between the plates
In this problem, we have:
is the potential difference between the plates
d = 15 mm = 0.015 m is the distance between the plates
Therefore, rearranging the equation we find the strength of the electric field:

Answer:
load
a generator, a light bulb (load) and a closed switch
Explanation:
as explained in the other question, the fan is using generated electric energy to create mechanical movement. as such it is a load on the grid or circuit or net.
and electric power can only flow, if there is a closed (uninterupted) circuit from the power source to a load and back.
any open switch is an interruption of the circuit.
a buzzer is a kind of switch. it closes the circuit (and puts a load on) only when somebody presses it.
by the way, a closed circuit without a load will "destroy" (short circuit) the power source or at least the wires (burn through).
The answer is c, because ball is falling so its gravitationl potential energy decreases, but it kinetic energy increases. Energy is always conserved.