Answer:
The new force between the charges becomes double of the initial force.
Explanation:
The force acting between charge particles is given by :

k is electrostatic constant
r is distance between charges
If one of the charges are doubled, then, q₁ = 2q₁
The new force becomes,

So, the new force between the charges becomes double of the initial force.
Answer:
(a): a = 0.4m/s²
(b): α = 8 radians/s²
Explanation:
First we propose an equation to determine the linear acceleration and an equation to determine the space traveled in the ramp (5m):
a= (Vf-Vi)/t = (2m/s)/t
a: linear acceleration.
Vf: speed at the end of the ramp.
Vi: speed at the beginning of the ramp (zero).
d= (1/2)×a×t² = 5m
d: distance of the ramp (5m).
We replace the first equation in the second to determine the travel time on the ramp:
d = 5m = (1/2)×( (2m/s)/t)×t² = (1m/s)×t ⇒ t = 5s
And the linear acceleration will be:
a = (2m/s)/5s = 0.4m/s²
Now we determine the perimeter of the cylinder to know the linear distance traveled on the ramp in a revolution:
perimeter = π×diameter = π×0.1m = 0.3142m
To determine the angular acceleration we divide the linear acceleration by the radius of the cylinder:
α = (0.4m/s²)/(0.05m) = 8 radians/s²
α: angular aceleration.
Answer:

Explanation:
= Permittivity of free space = 
A = Area = 
d = Thickness = 
k = Dielectric constant = 5.4
V = Voltage = 86.2 mV
Charge is given by

The charge on the outer surface is 